FINAL ‘Ma,th 252 PRACTICE

Note: This is a practice exam and is intended only for study purposes. The actual exam will
contain different questions and may have a different layout.

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true.
Otherwise, circle F. Let a and b be constants with a < b and f(z) and g(z) be contin-
uous functions on [a, b].

f@ F  We can differentiate any rudimentary collection of
functions with calculus 1 methods.

T @ We can integrate any rudimentary collection of functions
with calculus 2 methods.
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T @ /a f(z)g(z) dx:/a f(a:)dac*g(:c)—}—f(g;) */a g(z) dz
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T {F} If f is continuous, then / f(z)dz = lim / flz)ydx. J
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i’D F If [ f(z)dr and faoo g(z) dz are both convergent,
then [ f(x) + g(x) dz is convergent.
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Show your work for the foillowing problems. The correct answer with o
no supporting work will receive NO credit (this includes multiple choice
questions).

9. Carefully write down the first Fundamental Theorem of Calculus.
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3. Describe Simpson s Rule for apbroxi}}lating &ii:eas.ﬁ?l don’t want a formula here, but
rather an explanation of where the formula comes from.)




4. Find the following:
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5. Let v be the function that records the velocity of a partlcl whicil is Wé’ﬁ""ap‘prfoximatedw
by the following formula.

(a) Carefully graph v(t) on the set of axis. -2 t< -1
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(b) Give a rough sketch of the function recording the acceleratxon of the particle on
the set of axis on the left. ¥ o e
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(c) Give a rough sketch of the graph fo v(t) dt on té set of ax1s on the right.
(d) Describe the physical meaning of 5 v(t) dt. ; o e A
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6. For each of the following outline the method(s) you would use to find the general
antiderivative. For extra credit, find the general antiderivative (each one will earn 1%).
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¥ Tind the average value of g on the interval [2, 5].

7. Let g(z) = e ra—
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9. Write the following in sigma notation:
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10. Let f(z) = sin(z). Find the area of the region bounded by f, vy = z2, the tangent line

to this parabola at (1 1), and the z-axis.
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11. Consider the region trapped éetween fk ) = %, t;he T-8xX 1;‘%} andj from &= 0 to z = 1.
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(b) What would dts volume be 1f it was revolved about the x- ax1s‘7
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[10] A tank has the shape of an inverted circular cone with height 10m and base 4 m.
It is filled with water to a height of 8m. Find the work required to empty the tank by
pumping all of the water to the top of the tank. (The density of water is 1000kg/m?.)
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13. Dr. Card is found dead in his office at 5:00pm one evening. The temperature of his
body was 80.0°F. One hour later, at 6:00pm, the body has cooled to 75.0°F. The room
is kept at a constant temperature of 70°F. Assume Dr. Card had a normal temperature
of 98.6°F at the time of death.

Let f(t) be the temperature of the body after ¢ hours.
(a) By Newton’s law of cooling, the rate a body cools is proportional to the difference

in temperature between the body and the ambient temperature. Write down the
differential equation reflecting this particular situation.

(b) Solve for f(t) as a function of ¢. .
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(b) [ xcos®xdx
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