Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let a and b be constants with $a \leq b$ and $f(x)$ and $g(x)$ be continuous functions on $[a, b]$.

T F We can differentiate any rudimentary collection of functions with calculus 1 methods.

T F We can integrate any rudimentary collection of functions with calculus 2 methods.

T $\quad \mathrm{F} \quad \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
$\mathrm{T} \quad \mathrm{F} \quad \int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d x * g(x)+f(x) * \int_{a}^{b} g(x) d x$
$\mathrm{T} \quad \mathrm{F}$ If f is continuous, then $\int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x$.
T F If $\int_{a}^{\infty} f(x) d x$ and $\int_{a}^{\infty} g(x) d x$ are both convergent, then $\int_{a}^{\infty} f(x)+g(x) d x$ is convergent.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. Carefully write down the first Fundamental Theorem of Calculus.
3. Describe Simpson's Rule for approximating areas. (I don't want a formula here, but rather an explanation of where the formula comes from.)
4. Find the following:

$$
\frac{d}{d x} \int_{x}^{3} \frac{3^{u} \pi-e}{\sqrt{u^{3}+7}} d u
$$

$$
\frac{d}{d x} \int_{0}^{x^{2}+3 x} e^{t^{2}} d t
$$

5. Let v be the function that records the velocity of a particle which is well approximated by the following formula.
(a) Carefully graph $v(t)$ on the set of axis.

$$
v(t)= \begin{cases}-2 & t \leq-1 \\ 2 t & \text { if }-1 \leq x \leq 0 \\ \sin t & \text { if } 0<t\end{cases}
$$

(b) Give a rough sketch of the function recording the acceleration of the particle on the set of axis on the left.

(c) Give a rough sketch of the graph $\int_{0}^{x} v(t) d t$ on the set of axis on the right.
(d) Describe the physical meaning of $\int_{0}^{x} v(t) d t$.
6. For each of the following outline the method(s) you would use to find the general antiderivative. For extra credit, find the general antiderivative (each one will earn 1%).

$$
\int_{0}^{\frac{\pi}{4}} \sec ^{4} x \tan ^{4} x d x
$$

$$
\int x \cos ^{2} x d x
$$

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

$$
\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x
$$

$$
\int_{0}^{3} \frac{1}{x-1} d x
$$

$$
\int \frac{17 x-1}{2 x^{2}+3 x-2} d x
$$

7. Let $g(x)=\frac{12 x}{x^{2}+x-2}$. Find the average value of g on the interval $[2,5]$.
8. Match the differential equations with the solutions graphs.

Briefly justify your choice.
(a) $y^{\prime}=x e^{-x^{2}-y^{2}}$
(b) $y^{\prime}=\sin (x y) \cos (x y)$

9. Write the following in sigma notation:

$$
-\frac{1}{3}+\frac{3}{7}-\frac{1}{2}+\frac{5}{9}-\frac{3}{5}+\frac{7}{11} \quad 1+2+4+8+16+32
$$

10. Let $f(x)=\sin (x)$. Find the area of the region bounded by $f, y=x^{2}$, the tangent line to this parabola at $(1,1)$, and the x-axis.
11. Consider the region trapped between $f(x)=\frac{1}{x}$, the x-axis, and from $x=0$ to $x=1$.
(a) If this region was revolved about the y-axis, what would the resulting volume be?
(b) What would its volume be if it was revolved about the x-axis?
12. A tank has the shape of an inverted circular cone with height 10 m and base 4 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)
13. Dr. Card is found dead in his office at $5: 00 \mathrm{pm}$ one evening. The temperature of his body was $80.0^{\circ} \mathrm{F}$. One hour later, at $6: 00 \mathrm{pm}$, the body has cooled to $75.0^{\circ} \mathrm{F}$. The room is kept at a constant temperature of $70^{\circ} \mathrm{F}$. Assume Dr. Card had a normal temperature of $98.6^{\circ} \mathrm{F}$ at the time of death.

Let $f(t)$ be the temperature of the body after t hours.
(a) By Newton's law of cooling, the rate a body cools is proportional to the difference in temperature between the body and the ambient temperature. Write down the differential equation reflecting this particular situation.
(b) Solve for $f(t)$ as a function of t.
(c) When did the murder take place?

