FINAL Math 125 PI

PRACTICE

Note: This is a practice exam and is intended only for study purposes. The actual exam will contain different questions and may have a different layout.

- 1. TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let a and b be constants with $a \leq b$ and f(x) and g(x) be continuous functions on [a, b].
 - T F We can differentiate any rudimentary collection of functions with calculus 1 methods.
 - T F We can integrate any rudimentary collection of functions with calculus 2 methods.

$$\begin{array}{lll} \mathrm{T} & \mathrm{F} & \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \\ \mathrm{T} & \mathrm{F} & \int_{a}^{b} f(x) g(x) \, dx = \int_{a}^{b} f(x) \, dx \ast g(x) + f(x) \ast \int_{a}^{b} g(x) \, dx \\ \mathrm{T} & \mathrm{F} & \mathrm{If} \ f \ \mathrm{is \ continuous, \ then \ } \int_{-\infty}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) \, dx. \end{array}$$

T F If $\int_a^{\infty} f(x) dx$ and $\int_a^{\infty} g(x) dx$ are both convergent, then $\int_a^{\infty} f(x) + g(x) dx$ is convergent.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

- 2. Carefully write down the first Fundamental Theorem of Calculus.
- 3. Describe Simpson's Rule for approximating areas. (I don't want a formula here, but rather an explanation of where the formula comes from.)

4. Find the following:

$$\frac{d}{dx}\int_x^3 \frac{3^u \pi - e}{\sqrt{u^3 + 7}} \, du$$

$$\frac{d}{dx}\int_0^{x^2+3x} e^{t^2} dt$$

5. Let v be the function that records the velocity of a particle which is well approximated by the following formula.

			у 2						
				y=pi/2		1			Î
			1						
-3	-2	-1	0		1	x=pi/2	2	3 x=pi	4 x
			1			-			
			-2						

$$v(t) = \begin{cases} -2 & t \le -1\\ 2t & \text{if } -1 \le x \le 0\\ \sin t & \text{if } 0 < t \end{cases}$$

(b) Give a rough sketch of the function recording the acceleration of the particle on the set of axis on the left.

		y	1								y y	1				
		2	y=pi/2									y=pi/2				
		1						-			1					
-3	-2	-1 0		1 x=pi/2	2	3 x=pi	4 _x		-3	-2	-1 C		1 x=pi/2	2	3 ×=pi	4 _x
		-2	2					-			-2	2				

- (c) Give a rough sketch of the graph $\int_0^x v(t) dt$ on the set of axis on the right.
- (d) Describe the physical meaning of $\int_0^x v(t) dt$.

6. For each of the following outline the method(s) you would use to find the general antiderivative. *For extra credit*, find the general antiderivative (each one will earn 1%).

$$\int_0^{\frac{\pi}{4}} \sec^4 x \tan^4 x \, dx \qquad \qquad \int x \cos^2 x \, dx$$

$$\int_{1}^{\infty} \frac{1}{x^2} dx \qquad \qquad \int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$

$$\int_{0}^{3} \frac{1}{x-1} dx \qquad \qquad \int \frac{17x-1}{2x^{2}+3x-2} dx$$

7. Let $g(x) = \frac{12x}{x^2 + x - 2}$. Find the average value of g on the interval [2, 5].

8. Match the differential equations with the solutions graphs. Briefly justify your choice.

(a)
$$y' = xe^{-x^2 - y^2}$$
 (b) $y' = \sin(xy)\cos(xy)$

9. Write the following in sigma notation:

$$-\frac{1}{3} + \frac{3}{7} - \frac{1}{2} + \frac{5}{9} - \frac{3}{5} + \frac{7}{11}$$
 1+2+4+8+16+32

10. Let $f(x) = \sin(x)$. Find the area of the region bounded by $f, y = x^2$, the tangent line to this parabola at (1, 1), and the x-axis.

- 11. Consider the region trapped between $f(x) = \frac{1}{x}$, the x-axis, and from x = 0 to x = 1.
 - (a) If this region was revolved about the *y*-axis, what would the resulting volume be?

(b) What would its volume be if it was revolved about the x-axis?

12. A tank has the shape of an inverted circular cone with height 10m and base 4 m. It is filled with water to a height of 8m. Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is 1000kg/m^3 .)

13. Dr. Card is found dead in his office at 5:00pm one evening. The temperature of his body was 80.0°F. One hour later, at 6:00pm, the body has cooled to 75.0°F. The room is kept at a constant temperature of 70°F. Assume Dr. Card had a normal temperature of 98.6°F at the time of death.

Let f(t) be the temperature of the body after t hours.

- (a) By Newton's law of cooling, the rate a body cools is proportional to the difference in temperature between the body and the ambient temperature. Write down the differential equation reflecting this particular situation.
- (b) Solve for f(t) as a function of t.

(c) When did the murder take place?