1. [8] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f and g be continuous functions and let a, b, and c be constants.

T $\quad \mathrm{F} \quad \frac{\sqrt{x}}{x-5}=\frac{\sqrt{x}}{x}-\frac{\sqrt{x}}{5}$
T $\quad \mathrm{F} \quad \int x d x=\int_{0}^{1} x d x$
T F $\quad \int \frac{1}{1+x^{2}} d x=\arctan (x)+c$
T F All continuous functions have antiderivatives.
T F $\quad \int \frac{f(x)}{g(x)} d x=\frac{\int f(x) d x}{\int g(x) d x}$
T $\quad \mathrm{F} \quad \int_{a}^{b} f(x)+g(x) d x=\int_{a}^{c} f(x)+g(x) d x+\int_{c}^{b} f(x)+g(x) d x$
T F $\quad \int_{-1}^{1} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{-1} ^{1}=\frac{-1}{1}-\frac{-1}{-1}=-2$
T F Marginal revenue is similar to the derivative of the revenue function.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [5] You have a friend in Calculus 1 this term who has just learned what a derivative is. Explain how your friend how the derivatives relates to areas.
3. Consider the shaded region beneath the straight line shown on the right:
(a) [3] (def. int. wks \#2) Describe the shaded area as a definite integral.
(b) [3] (WebHW2 \#6) Use three rectangles with a base length
 of $\frac{1}{3}$ to approximate the area.
Specify if you are using left-hand, right-hand, or midpoint approximations
4. Consider the piecewise-defined velocity function f defined in the graph to the right.
(a) [3] (Quiz1 \#2) Sketch the graph of $F(x)=\int_{0}^{x} f(x) d x$ on the graph below.

(b) [2] (Quiz 2\#2) Find the total distance traveled from $t=0$ to $t=7$.
5. [2] (WebHW5 \#10) If g is continuous and $\int_{-3}^{7} \frac{1}{2} g(x) d x=4$, find $\int_{0}^{5} g(2 x-3) d x$.
6. Find the following or explain why it does not exist.
[2] (Substitution Wks \#1)
[3] (WebHW4 \#9) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$

$$
\int_{0}^{1} x^{10}+10^{x} d x
$$

$$
\begin{aligned}
& {[3](\mathrm{WebHW} 3 \# 10)} \\
& \frac{d}{d x}\left(\int_{9}^{\tan (x)} \sqrt{5 t+\sqrt{t}} d t\right)
\end{aligned}
$$

$$
[2](\S 5.5 \# 68)
$$

$$
\int \frac{2 x+8}{x^{2}+8 x+16} d v
$$

7. ($\S 6.1 \# 50$) Consider the region bounded by the curve $f(x)=2 \sin \left(\frac{\pi}{3} x\right)$, the line tangent to f when $x=1$, and the y-axis.
(a) [1] Carefully draw the region described above.
(b) [2] Find the equation of the line tangent to f when $x=1$.
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y_{5}^{5} & & & & & \\ \hline\end{array}\right)$
(c) [2] Set up the integral but do not find/integrate that corresponds to the area sketched in part (a).
8. ($\S 6.2 \# 12$) [4] Consider the region shown below on the left where the curve is defined by $y=2 e^{-x}$ and the dotted line is the axis about which the region will be rotated to produce the volume shown on the right. Set up the definite integral to find the volume of the object shown below on the left. You do not need to integrate but be sure to show your work so I can follow your reasoning!

9. [5] Choose ONE of the following. Clearly identify which of the two you are answering and what work you want to be considered for credit.
No, doing both questions will not earn you extra credit.
(a) (Word Problem Wks \#3) The gravity (acceleration imposed on an object by the planet) on mars is $3.69 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Let's consider what could happen if NASA's next Mars explorer has "boosters" which will to let the explorer fly up with a maximum upwards velocity of 5 meters per second.
i. [2] If the new explorer jumped off the edge of a cliff 7250 m with a maximum upwards velocity, find a function to describe the velocity t seconds after the explorer jumps off the edge.
ii. [3] What speed would the explorer be going when it hit the ground?
(b) (Word Problem Wks \#7) Consider $f(x)=1+x^{2}$
i. [1] Find the average of $2,1,2$, and 5 .
ii. [2] Find the average of $f(x)$ from $x=-1$ to $x=2$.
iii. [2] If we were to "deform" the area $\int_{-1}^{2} f(x) d x$ into a box 3 units (or $2-(-1)$ units) wide and l units long. What would t be?
