Antiderivatives

1. Find the most general antiderivative for each of the following:

$$2x + 1$$

$$x^2 - e^x$$

$$\sin(x)$$

$$\frac{-1}{r^2}$$

$$\frac{1}{x}$$

$$\frac{2x^5 - \sqrt{x}}{x}$$

2. Repeat the exercise we did at the start of class. That is, for each graph of g below, sketch a graph of $G(x)=\int_0^x g(t)\,dt$.

Fundamental Theorems of Calculus

1. For each function F defined below, find F'.

$$F(x) = \int_5^x t^2 - e^t dt$$

$$F(y) = \int_{1}^{1+3y} \frac{u^3}{1+u^2} \, du$$

$$F(y) = \int_{1}^{e^{y}} \ln(t) dt$$

$$F(x) = \int_{x}^{\pi} \sqrt{1 + \sec(t)} \, dt$$

2. Evaluate:

$$\int_0^1 x^2 \, dx$$

$$\int_{2}^{6} \frac{1}{u} du$$

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

Verify your answers by considering the graphs and/or looking at examples 6, 7, & 9 on pages 392-393.