Expression	Substitution	Restrictions	Reason
$\sqrt{a^{2}-x^{2}}$	$x=a \sin (\theta)$	$\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$1-\sin ^{2}(\theta)=\cos ^{2}(\theta)$
	OR $x=a \cos (\theta)$	$0 \leq \theta \leq \pi$	$1-\cos ^{2}(\theta)=\sin ^{2}(\theta)$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan (\theta)$	$\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec (\theta)$	$0 \leq \theta \leq \pi$	$\sec ^{2}(\theta)-1=\tan ^{2}(\theta)$

Reasonable supporting work must be shown to earn credit.

1. Each of the following is wrong. Explain why.
(a) $[2]\left(10 / 23\right.$ Activity \#1) $\int 2 x \sin (x) d x=-x^{2} \cos (x)+c$
(b) [2] (WebHW7-3 \#2) We let $x=\sqrt{7} \sec (\theta)$, then $\int \frac{x^{2}}{\sqrt{x^{2}-7}} d x=\frac{7 \sec ^{2}(\theta)}{\sqrt{7 \sec ^{2}(\theta)-7}} \cdot \tan (\theta) \sec (\theta)$
(c) [2] (PracticeExam\#1) Substitution $\int_{0}^{1} y\left(y^{2}+1\right)^{5} d y=\int_{0}^{1} \frac{1}{2} u^{5} d u$
(d) [2] The region bounded by $y=\frac{1}{2} x+1, y=0, x=0$, and $x=2$, revolved around the line $y=-1$ has volume $\int_{0}^{2} \pi\left(\frac{1}{2} x+1\right)^{2} d x$
2. [4] (Quiz4 \#1) Describe

$$
\begin{aligned}
& \int \cot ^{3}(x) \csc (x) d x d x \\
& =\int \cos ^{2}(x) \cot (x) \csc (x) d x \\
& \begin{array}{l}
u=\csc (x) \\
d u=(\csc (x))^{\prime}=\left(\frac{1}{\operatorname{s} \cdot(x)}\right)^{\prime} d x
\end{array} \\
& =\frac{\sin (x) \cdot-1 \cos x}{5^{2} 2 x} d x \\
& =-\frac{\cos x}{\sin x} \cdot \sin x d x \\
& =-\cot (x) \csc (x) d x \\
& \Rightarrow-d u=\cot (x) \csc (x) d x \\
& \text { Recall } \frac{3^{2} x+\cos ^{2} x=1}{\sin ^{2} x} x=\frac{1}{\sin ^{2} x} \\
& \Rightarrow 1+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \\
& \Rightarrow 1+\cot ^{2} x=\csc ^{2} x \\
& \Rightarrow \cot ^{2}(x)=\csc ^{2} x-1 \\
& \text { - } \int \cot ^{2}(x)(-d u)=\int\left(\csc ^{2} x-1\right)(-d x) \\
& =-\int u^{2}-1 d u=-\left(\frac{1}{3} u^{3}-u\right)+d \\
& =\frac{-1}{3} \csc ^{3}(x)+\csc (x)+C \\
& \text { CK: }\left[-1 / \csc ^{3}(x)+\csc (x)+\operatorname{cc}\right]^{\prime}=\frac{+3}{3} \operatorname{csse}^{2}(x)(-\cot (x) \csc (x))-\csc (x) \cos (x)
\end{aligned}
$$

3. For each of the following, identify the technique you would use to find the indefinite integral. For example, if you think substitution would work, write "substitution" and identify what u would be. If you think integration by parts, write "integration by parts" and identify what u and $d v$ would be.
(a) $[2]$

$$
\int 4 \sin ^{2}(t) \cos ^{3}(t) d t
$$

(b) $[2]$

$$
\int \frac{y}{\sqrt{4 y^{2}+9}} d y
$$

4. [4] Evaluate one of the indefinite integrals above.
5. A particle is moving along a straight line and has a velocity $v(t)=5 t e^{-t}$ meters per second after t seconds.
(a) [1] (Quiz4\#3) Find the velocity of the particle when $t=2$.
(b) [3] (WordProblem2\#1) Find the acceleration of the particle when $t=2$.

(c) [3] (WrittenHW7.1\#75) Find the expression that you could give to technology that would return the change in distance in the first 2 seconds.
6. Let f be a twice differentiable function with the values f and f^{\prime} given below.

x	$f(x)$	$f^{\prime}(x)$
1	-2	4
5	3	5

(a) [1] Find $f(5)$, if possible.
(b) [3] (PracticeExam2\#4) Evaluate $\int_{1}^{5} f^{\prime \prime}(x) d x$, if possible.
(c) [3] (Quiz4\#2) Evaluate $\int_{1}^{5} 6 x f^{\prime \prime}(x) d x$, if possible.
7. [3] One problem substituted $x=6 \tan (\theta)$ and then integrated to get $\frac{1}{36} \sin (\theta)+C$. Convert this answer (that is currently in terms of θ) back into terms of x.
8. The graph of $x^{2}-4 y^{2}=1$ is given below.
(a) [2] Shade the region trapped by $x^{2}-4 y^{2}=1, y=2$, and the x-axis.
(b) [4] (WrittenHW§7.3\#40)

Set up the definite integral (but do not compute!) that will find the area of the shaded region.

(c) $[2](\S 6.2 \# 2)$ Consider the volume whose base was shaded in (a). The cross sections (perpendicular to the y axis) of the object are squares. Sketch one of the approximating cylinders of this volume.
(d) [4] (WordProblem2\#7) Set up the definite integral that would find the volume described above.
9. [1] Provide a topic or problem that you studied for but did not see on the exam.

