Show all your work.
Reasonable supporting work must be shown to earn credit.

1. [3] (SummationActivity \#1) Expand $\sum_{i=1}^{4}\left(\frac{2 i}{i+1}\right)$.
(You do not need to compute or simplify this!)
2. [4] (Quiz1\#1) Consider the shaded area trapped between the circle centered at $(0,0)$ with radius one and the x and y axis shown below. Display the shaded area as a definite integral. Make sure you write it in such a way that technology could compute your answer.

3. [6] (WebHW5-5\#8 \& WebHW5-3\#16) Outline how you would find the following. For example, if you use substitution, identify the u and $d u$ that an be used to find an antiderivative. If you use a theorem or rule, identify which one. You do not need to integrate!!
(a) $\int \frac{(\arctan (x))^{4}}{x^{2}+1} d x$
(b) $\frac{d}{d x}\left(\int_{2}^{3 x+5} \frac{t}{1+t^{2}} d x\right)$
4. Let $v(t)$ be the piece-wise defined function graphed below that is comprised of straight lines. The graph of v reports the velocity (inches per second) of a bug walking along the top of wooden gate at time t. At $t=0$, the bug is in the middle of the gate and the positive direction be movement to the right.
Let $p(x)=\int_{0}^{x} v(t) d t$
(a) [1] (Quiz2\#1)

Estimate $v(4)$.
(b) [2] (WordProblem\#12)

What is the bug's top speed?

(c) [2] (WebHW5-3\#1) Find $v^{\prime}(6)$.
(d) [2] (WordProblems\#1) Interpret $v^{\prime}(6)$ in terms of distance, velocity, or acceleration of the bug.
(e) [2] (WrittenHW5-3\#4) Estimate $p(10)$.
(f) [2] (IndefinitieActivity \#3) How far from the middle is the bug after 10 seconds?
5. (WebHW6-1\#3) Consider the area trapped by $f(x)=\frac{1}{5} x^{3}-3 x$, and $g(x)=x$.
(a) [2] Sketch and shade the region bounded by the curves.
(b) [4] Set up the definite integral
 (but do not compute!)that will find the area of the shaded region.

-4	-3	-2	-1	0	1	2	3		
				-1					
				-2					
				-3					
				-4					

6. Each of the regions, $A, B, \& C$ bounded by the graph of f and the x axis has area 5 .

Find the following:
(a) [2] (DefiniteIntegralActivity\#3) $\int_{0}^{2} 3 f(t) d t$
(b) [4] (WebHW5-2\&5-3\#7)
$\int_{-4}^{2} f(x)+2 x d x$

7. [4] Each of the following is wrong. Explain why.
(a) $\left.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin (x)}{\cos ^{2}(x)} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{u^{2}} d u=-u^{-1}\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\left(-\frac{\pi}{3}\right)^{-1}-\left(-\frac{\pi}{6}^{-1}\right)=\frac{-3}{\pi}+\frac{6}{\pi}=\frac{3}{\pi}$
(b) $\int_{1}^{2} \frac{4}{x^{3}} d x=\int_{1}^{2} 4 x^{-3} d x=\left.4(-3) x^{-4}\right|_{1} ^{2}=-12 \cdot 2^{-4}-\left(-12 \cdot(1)^{-4}\right)=-192+12=180$
8. (WebHW6-1\#9) Two cars A and B start side by side and accelerate from rest. The figure shows the graphs of their velocity functions.
(a) [2] Explain the meaning of the intersection.
(b) [3] Which car is leading after 6 minutes? Justify your answer.

9. (WebHW5.5 \#13) A bacterial population starts with 300 bacteria and grows at a rate of $r(t)=(450.268) e^{1.12567 t}$ bacteria per hour. How many bacteria will there be after three hours?
(a) [2] How many bacteria will there be after three hours?
(b) [3] Write down a function that returns how many bacteria there are at time t.

