NAME:

1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F.

T (F) $\left(x^{2}\right)^{3}=x^{5}$

$$
\left(x^{2}\right)^{3}=x^{2} x^{2} x^{2}=(x)(x x)(x x)=x^{6}
$$

T (F) $\sqrt{b^{2}+x^{2}}=b+x \quad$ let $x=1$ and $b=1 \quad \sqrt{1^{2}+1^{2}}=\sqrt{2} \quad * 2=1+1$
T (F) $\int x^{2} \cdot e^{x} d x=\frac{1}{3} x^{3} \cdot e^{x}+c \quad d / 2 x\left(\frac{1}{3} x^{3} \cdot e^{x}+c\right)=\frac{1}{3} x^{3} \cdot e^{x}+e^{x} x^{2}+0$
T (F) $\frac{d}{d x}(\cos (x))=\sin (x)$
(T) $\mathrm{F} \sec (x)=\frac{1}{\cos (x)}$

$$
d / d x(\cos (x))=-\sin (x)
$$

T (F) $\int \ln (x) d x=\frac{1}{x}+c$
by donation

$$
d_{x}(\ln (x))=\frac{1}{x}
$$

(T) $\mathrm{F} \int 7^{x} d x=\frac{1}{\ln (7)} 7^{x}+c \quad d / d x\left(\frac{1}{\ln }, 7^{y}+\mathrm{C}\right)=\frac{1}{\operatorname{lo}}, \mathrm{~d} 77^{x}+0$

Show all your work. Reasonable supporting work must be shown to earn credit.
2. Let $f(x)$ be a function.
(a) [2] Explain what $\int_{0}^{5} f(x) d x$ is.
The signed (1.5) (15) trapped between Ne Taxis, hogrephd The signed $\frac{(1.5)}{\text { ceca }}$ trapped between
and pekan $x-\infty$ and $x=5$.
By cignod oed we mon the eves above the axis is postie an We aria cetus the x-axis is nagchue
(b) [2] Explain the mathematical difference between $\int f(x) d x$ and $\int_{0}^{5} f(x) d x$.
(1) $\int f(x) d x$ is the faxing of crtrederivatues of $C(x)$. That is, all Factors $P(x)$ so not $d /(x)(x)-(x)$.
(S)dPerca
(19) [Wheres $\int_{0}^{5} f(x) d x$ is a number corresponding
3. ($\S 8.3 \# 68)$ The graph of $f^{\prime}(x)$ is given below. Use the graph of $f^{\prime}(x)$ to answer:
(a) [2] Approximate the slope of the line tangent to f at $x=4$. Explain how you know.
Hithresupe (t) -1

\pm If final rut
of $f^{\prime}(x)$ Explain how you know.
(a) $x=1 / 2$
± 5 and $\frac{5 / 2}{+5}$
got ire +.5
(1.5) Slope idea

The slope increceses or is positive as we upproach a max of (41) I + then switches to regive offer the max. At $x=1 / 2+3 / 2$ this charge in slue is recorded as graph moves hive + to --
4. [5] One problem required a substitution of $x=5 \sin (\theta)$. Find the following quantities in terms of x :
(a) $\sin (\theta)=\frac{x}{5}+1$

(b) $\left.\cos (\theta)=\frac{\sqrt{25-x^{2}}}{5}\right]$ (1)

Sohconta a

$$
\cos \theta=\frac{a d y}{n j e}=\frac{a d s}{5}
$$

(c) $\tan \theta=\frac{\text { ope }}{\text { adj }}=\frac{x}{\sqrt{25-x^{2}}} \sqrt{1}$
start +.5
2 use pinegurs +.5 us correctly its see Soheantou his def of tennis

6. [3] (Quiz3 \#2) Set up the definite integral (s) to compute the area trapped between $y=2 x e^{-x}, y=2, x=0$ and $x=3$. Do not compute the answer.

$$
\int_{0}^{3} \frac{2-2 x e^{-x}}{(+1.5}+\frac{1.5}{+.5 \text { use } 2 x e^{-7}}
$$

7. (Lecture) Consider a solid whose base is bounded by $y=1-\frac{x}{2}, y=-1+\frac{x}{2}$ and $x=0$. The cross sections perpendicular to the x-axis are equilateral triangles. Complete the following steps as you would to find the volume of the object.
(a) [2] Draw the base of the object with the x and y axis.
(b) [2] Recall the volume can be calculated by taking limits of a sum of approximating slices/sections/cylinders/shapes. Draw such an approximating slice/section/cylinder/shape that you can use to find the volume of the object. Be sure to include the x, y, and z axis.
(c) [3] Set up the definite integral that would find the volume of the object. Do not compute this.
a.)

aves (4.5 corectarea (.3)

ares (.5) mes shape that cor
motes (c) (ti)

noe

$$
Y_{2 a}
$$

$$
\begin{aligned}
& \left(\frac{1}{2} a\right)^{2}+7^{2}=a^{2} \\
& \Rightarrow ?^{2}=a^{2}-\frac{1}{4} a^{2} \\
& \Rightarrow ?^{2}=\frac{3}{4} a^{2} \\
& \Rightarrow ?=\sqrt{\frac{2}{4} a^{2}} \\
& \Rightarrow ?=\frac{\sqrt{3}}{2} a \\
& \text { anta }
\end{aligned}
$$

 4
 ∞

8. (Word Problem 2 \#4) The download rate from the internet company is variable starting low, increasing, and then decreasing again. This data download rate (megabytes/second) can be modeled by $t^{2} e^{\frac{-t}{10}}+30$ where t is seconds since the start of download. The graph is given on the right.
(a) [1] Approximate the maximum download rate.

$$
\begin{array}{r}
t \geqslant 20 \text { and rate }\left.\approx 84^{\mathrm{MB} / 2 e^{2}}| |\right|_{5} \\
\text { (the burst?) }
\end{array}
$$

(b) [2] Approximate how much data has been downloaded in the first 50 seconds. Specify how you are doing your approximation!

$$
\begin{aligned}
& \text { Specify how you are doing your approximation! } \\
& \text { (15) Usn left hand rectangles }(4 d \text { then }) \\
& \text { +10 }[30 \cdot(12.5)+75 \cdot 12.5+80 \cdot 12.5+60 \cdot 12.5=3062.5
\end{aligned}
$$

(c) [1] is the approximation above an over or under estimate?
(x) [under by the loses of it ...
(d) [3] We would like to know how long it take to download a movies that is 3.5 gigabytes. Set up the equation (involving an integral) to find this time. Do not solve the equation.

ts wm $t^{2} e^{-x / 10}+30$

$+1+1$

9. [2] Explain one mathematical concept that your studied well while preparing for this test but don't feel as if you got to fully demonstrate. (Note, I am not asking for an analysis of what the test is lacking but rather a stunning display of mathematical prowess on your part.)

