NAME:

1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F.

T $\quad \mathrm{F} \quad\left(x^{2}\right)^{3}=x^{5}$
T $\quad \mathrm{F} \quad \sqrt{b^{2}+x^{2}}=b+x$
T $\quad \mathrm{F} \quad \int x^{2} \cdot e^{x} d x=\frac{1}{3} x^{3} \cdot e^{x}+c$
$\mathrm{T} \quad \mathrm{F} \quad \frac{d}{d x}(\cos (x))=\sin (x)$
T $\quad \mathrm{F} \quad \sec (x)=\frac{1}{\cos (x)}$
T F $\quad \int \ln (x) d x=\frac{1}{x}+c$
T $\quad \mathrm{F} \quad \int 7^{x} d x=\frac{1}{\ln (7)} 7^{x}+c$
Show all your work. Reasonable supporting work must be shown to earn credit.
2. Let $f(x)$ be a function.
(a) [2] Explain what $\int_{0}^{5} f(x) d x$ is.
(b) [2] Explain the mathematical difference between $\int f(x) d x$ and $\int_{0}^{5} f(x) d x$.
3. ($£ 8.3 \# 68)$ The graph of $f^{\prime}(x)$ is given below. Use the graph of $f^{\prime}(x)$ to answer:
(a) [2] Approximate the slope of the line tangent to f at $x=4$. Explain how you know.

(b) [3] Find the approximate x where f reaches a maximum. Explain how you know.
4. [5] One problem required a substitution of $x=5 \sin (\theta)$. Find the following quantities in terms of x :
(a) $\sin (\theta)$
(b) $\cos (\theta)$
(c) $\tan \theta$
5. [10] (§8.2 \#64, WebHW9, TrigActivity\#1) Find the indefinite integrals for TWO of the following:
(a) $\int \cos ^{2}(\theta) \sin ^{3}(\theta) d \theta$
(b) $\int \sqrt{1-4 x^{2}} d x$
(c) $\int t \sqrt{4-t} d t$
6. [3] (Quiz3 \#2) Set up the definite integral(s) to compute the area trapped between $y=2 x e^{-x}, y=2, x=0$ and $x=3$. Do not compute the answer.
7. (Lecture) Consider a solid whose base is bounded by $y=1-\frac{x}{2}, y=-1+\frac{x}{2}$ and $x=0$. The cross sections perpendicular to the x-axis are equilateral triangles. Complete the following steps as you would to find the volume of the object.
(a) [2] Draw the base of the object with the x and y axis.
(b) [2] Recall the volume can be calculated by taking limits of a sum of approximating slices/sections/cylinders/shapes. Draw such an approximating slice/section/cylinder/shape that you can use to find the volume of the object. Be sure to include the x, y, and z axis.
(c) [3] Set up the definite integral that would find the volume of the object. Do not compute this.
8. (Word Problem2 \#4) The download rate from the internet company is variable starting low, increasing, and then decreasing again. This data download rate (megabytes/second) can be modeled by $t^{2} e^{\frac{-t}{10}}+30$ where t is seconds since the start of download. The graph is given on the right.
(a) [1] Approximate the maximum download rate.

(b) [2] Approximate how much data has been downloaded in the first 50 seconds. Specify how you are doing your approximation!
(c) [1] is the approximation above an over or under estimate?
(d) [3] We would like to know how long it take to download a movies that is 3.5 gigabytes. Set up the equation (involving an integral) to find this time. Do not solve the equation.
9. [2] Explain one mathematical concept that your studied well while preparing for this test but don't feel as if you got to fully demonstrate. (Note, I am not asking for an analysis of what the test is lacking but rather a stunning display of mathematical prowess on your part.)

