TMATH 124: Quiz 2

Reasonable supporting work must be shown to earn credit.

1. [3] Find the algebraic (piece-wise defined) formula for the graph of m given below:

2. [4] Sketch the graph of a function β that satisfies *all* of the following.

(a) $\lim_{x \to \infty} \beta(x) = 3$					y_4^{5}					
(b) β is not continuous at $x = 2$.					3					
(c) $\lim_{x \to -3} \beta(x) = -\infty$					2					
					1					
	-4	-3	-2	-1	0	1	2	3	4	75
					-1					-1
					-2					
					-3					
					-4					

3. [3] Comparing the average cost of a product with the revenue the produce creates can help business owners increase profit (see TBECON220). One business found the cost, C, of making x units was well approximated by the function C(x) = 3.25x + 5500. Find the limit (numerically, graphically, or algebraically) of the average cost of a product as production ramps up to larger and larger numbers.