EXAM 2
Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit. Recall that you are allowed to use a one-sided 8.5in by 11in sheet of physical (not digital!) notes for this exam.

1. [8] Determine which derivative rule(s) you will use to find $\frac{d y}{d x}$ and find $\frac{d y}{d x}$

	Derivative Rule(s)	
$x^{2}+\arctan \left(x^{2}\right)$		
$y=\frac{x^{2} \log _{3}(x)}{x}$		

2. The work for the following problems is wrong. Explain why the solution is wrong and then find the correct solution.
(a) [4] Find $\frac{d y}{d x}$ given $y=(x-5)^{\frac{1}{x}}$.

$$
\begin{aligned}
\ln (y) & =(x-5)^{\frac{1}{x}} \ln \\
\frac{1}{y} \frac{d y}{d x} & =\frac{1}{x} \ln (x-5) \\
\frac{d y}{d x} & =y \cdot \frac{1}{x} \ln (x-5)
\end{aligned}
$$

(b) [4] Find y^{\prime} given $y=5 \cos ^{4}(\pi x)$.

$$
\begin{aligned}
y^{\prime} & =\left[5 \cos ^{4}(2 x)\right]^{\prime} \\
y^{\prime} & =5-\sin ^{4}(2 x) \cdot\left[(2 x)^{4}\right]^{\prime} \\
y^{\prime} & =5-\sin ^{4}(2 x) \cdot 4(2 x)^{3}[2 x]^{\prime} \\
y^{\prime} & =5-\sin ^{4}(2 x) \cdot 4(2 x)^{3} \cdot 2
\end{aligned}
$$

3. Let f be the function graphed on the right. Let $h(x)=2^{x}$. Using this and the information about g given below, find the following (if possible!):
$g(2)=1 \quad g^{\prime}(2)=-6$
$g(4)=3 \quad g^{\prime}(4)=-5$
(a) [1] Find $f(8)$
(b) [1] Find $f^{\prime}(6)$
(c) [3] Find $\left.\frac{d}{d x}(f(g(x)))\right|_{x=2}$.

(d) [3] Find $\left(\frac{f}{h}\right)^{\prime}(4)$.
(e) [3] Find $(g \cdot h)^{\prime}(4)$.
(f) [2] Find the equation of the line tangent to g at $x=2$.
(g) [2] Use linear approximation to estimate $g(2.1)$.
4. Consider the graphs recording the displacement of Dr. Ryan Card and Dr. Julie Eaton during a short race. The following graphs their respective displacement, measured in feet at time t in seconds.

(a) [3] Who can run faster? What is his/her top speed?
(b) [2] Explain why the displacement is not increasing at a constant rate for Dr. Ryan Card.
(c) [2] If the race is 12 feet long, who wins and at what time?
5. [3] Consider $x^{2}+y^{2}=100$. Find the x coordinant(s) on this graph whose tangent lines are parallel to $4 y=3 x+8$.
6. An air traffic controller spots two planes at the same altitude converging on a point, P as they fly at right angles to each other. Airplane A, is north of point P and flying south at 280 miles per hour. The second airplane, B, is east of P and is flying west at 960 miles per hour.
(a) [1] Draw a picture of the situation described.
(b) [2] Find a relationship between the rate of change of the distance between the planes and the variables you create in (a).
(c) [2] Find the rate the distance between the planes is decreasing when airplane A is 70 miles north of P and airplane B is 240 miles east of P.
7. [4] Choose a problem from this exam that you've already answered,
(a) show a second way of approaching/building a solution, and
(b) explain why you did not choose this second method initially.
