Name:

1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function.

T $\quad \mathrm{F} \quad(x+y)^{-2}=\sqrt{x+y}$
T $\quad \mathrm{F} \quad \lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right)$
$\mathrm{T} \quad \mathrm{F} \quad$ If $f^{\prime}(r)$ exists, then $\lim _{x \rightarrow r} f(x)=f(r)$.
T F The absolute value function is a differentiable function.
$\mathrm{T} \quad \mathrm{F} \quad$ If f is continuous, $f(0)=-5$, and $f(4)=8$, then $-5 \leq f(2) \leq 8$
T F If $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist.
T $\quad \mathrm{F} \quad \lim _{x \rightarrow-1}\left(x^{3}+5 x\right)=-6$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [2] (§2.7 \#20) If the tangent line to $y=f(x)$ at $(4,3)$ passes through the point $(0,2)$ find the following.
(a) $f(4)$
(b) $f^{\prime}(4)$
3. Let f be a piece-wise defined function defined by $f(x)= \begin{cases}3^{x} & \text { if } x \leq 0, \\ \sin (\pi x) & \text { if } 0<x<3,\end{cases}$
(a) [2] (Quiz1 \#1) Graph f on the axes provided.
(b) $[1](\S 2.2 \# 12)$ Determine the values of c for which $\lim _{x \rightarrow c} f(x)$ exists.

(c) [3] (WebHW3 \#11) Evaluate the following (if they exist!)

$$
\lim _{x \rightarrow 3^{-}} f(x) \quad f(0) \quad \lim _{x \rightarrow 0^{+}} f(x)
$$

4. [4] Find the limit if it exists, or explain why it does not exist.
(InfLimitsWks \#1)
(PracticeExam \#4)
$\lim _{x \rightarrow \infty} \frac{x-2}{x^{2}-1}$

$$
\lim _{x \rightarrow 5^{+}} \ln (x-5)
$$

5. [4] Find the limit if it exists, or explain why it does not exist.

$$
\begin{aligned}
& (\S 2.5 \# 36) \\
& \lim _{x \rightarrow \frac{p i}{2}} \sin (x+\cos (x))
\end{aligned}
$$

(§2.3 Lecture)
$\lim _{x \rightarrow 0} x^{2} \sin \frac{\pi}{x}$
6. [5] (ContWks \#6) Sketch a graph of a function α that satisfies all of the following:
(a) $\alpha(2)=2$
(b) $\lim _{x \rightarrow 2} \alpha(x)=-3$
(c) $\lim _{x \rightarrow \infty} \alpha(x)=-3$
(d) α is continuous for $-4 \leq x \leq 1$
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y^{5} & & & & & \\ \hline\end{array}\right)$
7. [3] Write the algebraic rule or the function α you created in the problem above.
8. Consider the graph of the piece-wise defined function g to answer the following questions
(a) $[1]($ WebHW2 \#1) $g(1)$
(b) [1] (WebHW2 \#1) $\lim _{x \rightarrow 3} g(x)$
(c) [1] (Quiz2 \#3) $g^{\prime}(3)$

(d) [2] (Quiz2 \#3) $\left.\frac{d}{d x} g\right|_{x=0}$
(e) [4] (WebHW5 \#6) Draw a graph of $g^{\prime}(x)$

9. (WebHW5 \#3) [5] Let $f(x)=4 x-x^{2}$. Find the equation for the line tangent to the graph of f, when $x=1$.
10. If a rock is thrown upward on the planet Mars with a velocity of $8 \mathrm{~m} / \mathrm{s}$, its height (in meters) after t seconds is given by $H(t)=8 t-2 t^{2}$.
(a) [2] Find a function that describes the instantaneous velocity of the ball after t seconds.
(b) [2] When does the ball reach its highest point?
(c) [1] When does the rock hit the surface?

