TMath 124

## Name:

1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let f be a function.

T F 
$$(x+y)^{-2} = \sqrt{x+y}$$

T F 
$$\lim_{x \to a} f(x) = f(\lim_{x \to a} x)$$

- T F If f'(r) exists, then  $\lim_{x \to r} f(x) = f(r)$ .
- T F The absolute value function is a differentiable function.

T F If f is continuous, 
$$f(0) = -5$$
, and  $f(4) = 8$ , then  $-5 \le f(2) \le 8$ 

T F If 
$$\lim_{x \to a} g(x) = 0$$
, then  $\lim_{x \to a} \frac{f(x)}{g(x)}$  does not exist.

T F 
$$\lim_{x \to -1} (x^3 + 5x) = -6$$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

- 2. [2] (§2.7 #20) If the tangent line to y = f(x) at (4,3) passes through the point (0,2) find the following.
  - (a) f(4)

(b) f'(4)

3. Let f be a piece-wise defined function defined by  $f(x) = \begin{cases} 3^x & \text{if } x \le 0, \\ \sin(\pi x) & \text{if } 0 < x < 3, \end{cases}$ 

- y<sub>4</sub><sup>5</sup> (a) [2] (Quiz1 #1) Graph f on the axes provided. 3 2 (b) [1] (§2.2 #12) Determine the 1 values of c for which  $\lim_{x \to c} f(x) \text{ exists.}$ 0 x<sup>5</sup> -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4
- (c) [3] (WebHW3 #11) Evaluate the following (if they exist!)  $\lim_{x \to 3^{-}} f(x) \qquad f(0) \qquad \lim_{x \to 0^{+}} f(x)$

4. [4] Find the limit if it exists, or explain why it does not exist.

| (InfLimitsWks #1)                       | (PracticeExam $\#4$ )       |
|-----------------------------------------|-----------------------------|
| $\lim_{x \to \infty} \frac{x-2}{x^2-1}$ | $\lim_{x \to 5^+} \ln(x-5)$ |

5. [4] Find the limit if it exists, or explain why it does not exist.

| $(\S2.5 \ \#36)$                        | $(\S2.3 \text{ Lecture})$     |
|-----------------------------------------|-------------------------------|
| $\lim_{x \to \infty} \sin(x + \cos(x))$ | $\lim x^2 \sin \frac{\pi}{-}$ |
| $x \rightarrow \frac{p_i}{2}$           | $x { ightarrow} 0$ $x$        |

6. [5] (ContWks #6) Sketch a graph of a function  $\alpha$  that satisfies all of the following:

|                                                   |    |    |    |    | E Å         |   |   |   |   | -              |
|---------------------------------------------------|----|----|----|----|-------------|---|---|---|---|----------------|
| (a) $\alpha(2) = 2$                               |    |    |    |    | $y_{4}^{5}$ |   |   |   |   |                |
| (a) $\alpha(2) = -3$<br>(b) $\lim \alpha(x) = -3$ |    |    |    |    | 3           |   |   |   |   |                |
| (c) $\lim_{x \to 2} \alpha(x) = -3$               |    |    |    |    | 2           |   |   |   |   |                |
| (d) $a_{x \to \infty}$ (d) $a_{x \to \infty}$     |    | 3  |    |    | 1           |   |   |   |   | 2              |
| (d) $\alpha$ is continuous for $-4 < x < 1$       | -4 | -3 | -2 | -1 | 0           | 1 | 2 | 3 | 4 | x <sup>5</sup> |
|                                                   |    |    |    |    | -1          |   |   |   |   |                |
|                                                   |    |    |    |    | -2          |   |   |   |   |                |
|                                                   |    |    |    |    | -3          |   |   |   |   |                |
|                                                   |    |    |    |    | -4          |   |   |   |   |                |

7. [3] Write the algebraic rule or the function  $\alpha$  you created in the problem above.

8. Consider the graph of the piece-wise defined function g to answer the following questions



9. (WebHW5 #3) [5] Let  $f(x) = 4x - x^2$ . Find the equation for the line tangent to the graph of f, when x = 1.

- 10. If a rock is thrown upward on the planet Mars with a velocity of 8m/s, its height (in meters) after t seconds is given by  $H(t) = 8t 2t^2$ .
  - (a) [2] Find a function that describes the instantaneous velocity of the ball after t seconds.
  - (b) [2] When does the ball reach its highest point?
  - (c) [1] When does the rock hit the surface?