TMATH 124 UH: Quiz 2

Show all your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

1. [2] (§2.5 \#50) TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F . Let f be a function.
$\mathrm{T} \quad \mathrm{F} \quad$ If f is continuous, $f(1)=5$, and $f(4)=-4$, then $-4 \leq f(3) \leq 5$.
$\mathrm{T} \quad \mathrm{F}$ If f is continuous, $f(1)=5$, and $f(4)=-4$, then f has a zero between $x=0$ and $x=4$.
2. [3] (Con't Wks \#6) Sketch a graph of a function α that satisfies all of the following:
(a) $\lim _{x \rightarrow-\infty} \alpha(x)=2$
(b) $\lim _{x \rightarrow+\infty} \alpha(x)=0$
(c) α is not continuous at $x=0$

				y_{1}^{5}					

3. [2] (WebHW3 \#4) Find the limit $\lim _{x \rightarrow 5} \frac{x^{2}-7 x+6}{x-5}$
4. [3] (WebHW3 \#1) For the function f whose graph is given, estimate the value of each quantity, if it exists. Note there are solid dots at $(-3,2),(-1,1)$, and $(4,1.2)$.

$\lim _{x \rightarrow 1} f(x)$

$$
\lim _{x \rightarrow 0} \frac{2 f(x)}{3+f(x)}
$$

