e
N

N

FIGURE 1 Graph of the 1mp1101t1y defined
functlony +xy--x —x+2.

FIGURE 2 The tangent line to the unit
circle x? + y2 =1 at P has slope —%.

Notice what happens if we insist on
applying the Chain Rule to & sin y, The
extra factor appears, but it is equal to 1:

d | . d
Esmy:(cosy)(%:cosy

e
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3.8 Implicit Differentiation

We have developed the basic techniques for calculatmg a derivative dy/dx when y is
given in terms of x by a formula—such as y = x> + 1. But suppose that y is determined

instead by an equation such as .
y4+xy=x3-x—|—2

In this case, we say that y is defined implicitly. How can we find the slope of the tangent
line at a point on the graph (Figure 1)? Although it may be difficult or even impossible to
solve for y explicitly as a function of x, we can find dy/dx using the method of implicit
differentiation.

To illustrate, consider the equation of the unit circle (Figure 2):

Pyt=1
Compute dy/dx by taking the derivative of both sides of the equation:

d oo o _d
-ca-(x +y)—dx(1)
d 2 d (o _
L)+ 0% =
. d
2x+a(y2)=0 '

How do we handle the term d—d; (¥%)? We use the Chain Rule, Think of y as a function
y = f(x). Then y* = (f(x))* and by the Chain Rule,

d o _d 2 _ af dy
=7 —c_lx(f(x)) —Zf(x)d =2y Y

Equation (2} becomes 2x + 2y%’ = 0, and we can solve for Ea% ify £

dy x
it A 3
==
4
M EXAMPLE 1 UseEq. (3) to find the slope of the tangent line at the point P = (% 3)
on the unit circle.
Solution Setx = — andy = 5 in Eq. (3):
dy| _ x _ -g- _ § .
dx |p y % 4

. In this particular example, we could have computed dy/dx directly, without implicit
differentiation. The upper semicircle is the graph of y = +/1 ~ x2 and

dy _d 1 L d x
1-x2=-(1-x3"/*
dx  dx * 2( x) dx 1—x2

This formula expresses dy/dx in terms of x alone, whereas Eq. (3) expresses dy/dx in
terrns of both x and y, as Is typical when we use implicit differentiation, The two formulas
agree because y = +/1 — x2,

Before presenting additional examples, let’s examine again how the factor dy/dx
arises when we differentiate an expression involving y with respect to x. It would not
appear if we were differentiating with respect to y. Thus,

(- =-

d . d d
—siny=cosy but — siny = (cos y) el
dy dx dx

d d

—yt =4y but —yt =43
dyy y u In ¥

3dy
dx

-
v
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FIGURE 3 Each branch of the graph of \ : \

y* + xy = 2% — x + 2 defines a function

of x.

DIFFERENTIATION

Similarly, the Product Rule applied to xy yields

dx  dy dy |
—(xy) ol Ak i '

The Quotient Rule applied to £2/y yields

d (2 _ yd? -2 _ 2y — 122
dt .yz y2'

B EXAMPLE 2 Find an equation of the tangent line at the point P = (1, 1) on the curve
(Figure 1)

¥+ xy =x*—x+2
Solation We break up the calculation into two steps.

Step 1. Differentiate both sides of the equation with respect to x.
Note that each occurrence of y in the original equation generates an a.ddmonal < upon

differentiation. 4
- y“+—( y)——(x —x+2) ' _
dy dy
3 2,2 .
4y E+(y+xa)-—3x 1
p A
Step 2. Solve for d—y

Move the terms involving dy/dx in Eq (4) to the left and place the remaining terms
on the right: !

42 12D Z3 1oy

dx dx
Then factor out dy/dx and divide:

d
(4y3+x)2§—=3x2-1—y

dy 3x%2—-1-y
dx 4y3+x EI
To find the derivative at P = (1, 1), apply Eq. (5} with x = land y = 1:
dy 3-7-1-1 1

E-x-. (1,1)=T‘|‘1—_§

An equation of the tangent lineis y - 1 = %(x —Doy= %x + %. n

CONCEPTUAL INSIGHT The graph of an equation does not always define a function be- ,
cause there may be more than one y-value for a given value of x. Implicit differentiation | '

-works because the graph is ‘generally made up of several pieces called branches, each of
‘whichrdoes-define 4 function (a proof of this fact relies on the Implicit Funcuon Theorem
-from advanced calculus). For example the branches of the umt circle x* + y2 =1 are |
‘the graphsof the functions y = +/'1 — x? and y = —+/'1 — x%. Similarly, the graph in |
Figure 3 has an upper and a lower branch. In most examples, the branches are differen- |
tiable except at certain. exceptlonal points where the tangent line may be vertical.

y ¥ ¥

o xf“‘/xx
- — ~—

Upper branch Lower branch



P=(1,1)

FIGURE 4 Graph of e* =7 = 2x% — y2,

GB FIGURE 5 Graph of
yeos(y + ¢ +¢2) = £3. The tangent line at
= (0, 3£} has slope —1.

-
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W EXAMPLE 3 Fmd the slope of the tangent line at the point £ = (1, 1) on the graph

of 77 =2x? — y2,

Solution We follow the steps of the previous example, this time writing y’ for dy/dx:
d

dq
___x-—y=____22_ 2z
dxe dx(x )

&1 —y) =4dx — 2y {Chain Rule applied to ")
&Y — &y = dx — 2yy
2y -y =dx — ¥ (place all y'-terms on left)

, dx—~e?
Y=o/
2y —e*Y .
The slope of the tangent line at P = (1, 1) is (Figure 4)

dy 4(1)——e 4—1

2 =r =3
ax | 1.1y 2(1)—e11 21 "

. vl
M EXAMPLE 4 Shorteut to Derivative at a Specific Point Calculate)d—y at the point
= (0, 3Z) on the curve (Figure 5): L

yeos(y +t 413 =1

Solution As before, differentiate both sides of the equation (we write y' for dy/dt):

d 2 _ 43
dzy°°s(y+‘+‘)—a‘
Y 2 : AW i
Y cos(y+t+12) —ysin(y +1+£)( +1+20) =3t [6]

-We could continue to solve for y' ¥/, but that is not necessary. Instead, we can substitute
=0,y= —— directly in Eq. (6) to obtain

y’cos(%r+0+02)—(%)sin(%+0+02) (Y+1+0 =
5
0—(7”) WG +1)=0

This givesus y' +1.=0ar y' = —1. . ' _ -

Derivatives of Inverse Trigonometric Functions

We now apply implicit differentiation to determine the derivatives of the inverse trigono-
metric functions. An interesting feature of these functions is that their derivatives are not
trigonometric. Rather, they involve quadratic expressions and their square roots. Keep in
mind the restricted domains of these functions.

THEQOREM 1 Derivatives of Arcsine and Arccosine

d . 1 d Loy 1 ' ‘
E;(sm x) = T E;(cos x)-_--——-—~-_l_ch

-1

Proof If y =sin™" x, our goalis to ﬁnd By applying sine to both sides, we have

siny=x
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&= REMINDER in Example 7 of Section -
1.5, we used the right triangle in Figure 6
in the computation:

adjacent
hypotenuse

=+/1—-x2

cos(sin"l‘ x)=cosy =

Vi-x2
FIGURE 6 Right triangle constructed so that
siny = x.

[

FIGURE 7 The angles 8 = sin~l x and
¥ = cos™! x are complementary and thus
sum to 7 /2.

The proofs of the formulas in Theorem 2
are similar to the proof of Theorem 1. See
Exercises 46-48.

Differentiating both sides of the equation, treating x as itself and y as a function of i

_x, we obtain

dx - cosy

In order to determine an algebraic expression in x for cos y, we construct a right triangle
as in Figure 6 such that sin y = x. We choose y to be its angle, and take its hypotenuse to | 1
be of length 1 and its opposite edge to have length x. Then, by the Pythagorean Theorem, !
its adjacent side must have length /1 — x2. We can therefore read off the triangle that Z

]

cosy = Y—— _x2 = /1 — x2. Thus,
dy 1 1
dx  cosy 1—x2

The fact that the domain of the inverse sine function is from -7 /2 to /2, over which
cosine is nonnegative, allows us to take the positive square root rather than the negative -
squars root. :
L x) s similar {see Exercise 45 or the next example).

n

d
The computation of o {cos™
X

W EXAMPLE 5 Complementary Angles The derivatives of sin ™! x and cos™

1 x are equal
up to a minus sign. Explain this by proving that ?

1

=1 - ks
sin  x 4-cos x=E

1

Selution In Figure 7, we have 6 = sin™! x and ¥ = cos™ x. These angles are comple-

mentary, so 6 -+ ¥ = 7 as claimed. Therefore,

sin~!x = g— —cos Vx ‘

d d d ‘:
d—xsin_lx=a(§—cos"1x)=—Ecos_1x N l

W EXAMPLE 6 Calculate f'(3), where f(x) = arcsin(x?).

Solution Recall that arcsin x is another notation for si'n_1 x. By the Chain Rule,

1 d 2x

d s Oy d . —leo 24y 2y

d—;arcsm(x )= a(sm (x)) = —1_—()2 dx( )- Wiy

( ) _ 2(3) 1 ' .
1
@ /5 7

THEOREM 2 Derivatives of Inverse Trigonomettic Functions ;
— t31;;1 P 2oty =
dx 2SN dx e +1 ‘
SsecTlx = _ 1 4 esc™l g = —- !
dx 7 xVxE=1 dx i/ =T
- !
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W EXAMPLE 7 Calculate :;i(csc_l(e" + 1))
X

x=0
Solution Apply the Chain Rule using the formula i csc"1 = ———L—'
| du lulvu2 —1
d -1
—csc (€ + 1) = -—( +1)
dx e+ 1|J(ex +12~
_ e*
(€ + DV 1 20
We have replaced |¢* + 1] by ¥ + 1 because this quantity is positive. Now we have
i o &0 1
—csc (¥ +1) = — =— _ |
dx x=0 (€@ + 1)v/el + 2¢0 24/3

Finding Higher Order Derivatives Implicitly

‘We may need to find a higher order derivative of a function that is defined implicitly, as
in the next example.

B EXAMPLE 8 Find a formula for %;% if y is defined implicitly as a function of x by ‘
x4+ 43.12 =17.

Solution We differentiate with respect to x, writing y’ for j—;’
2x+8yy =0

Solving for ¥, we obtain

X
¥ 4y

Differentiating again with respect to x, we obtain

g = WED - CNE) _ myt+ay
16y2 4y?

Subsﬁtuﬁng in the fact that y' = 7& 5 yields

u_. 7Y +x(—x/4y) "‘4)’2 — x?
4 4y2 T 16y3

3.8 SUMMARY

« Implicit differentiation is used to compute dy/dx when x and y are related by an
equation. . .

Step 1. Take the derivative of both sides of the equation with resﬁect to x.

Step 2. Solve for dy/dx by collecting the terms involving dy /dx oh one side and the
remaining terms on the other side of the equation. .

» Remember to include the factor dy/dx when differentiating expressions involving y
with respect to x. For instance,

d sin -'(cos )d_y
dx r= Y dx
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+ Derivative formuias:

1 d 1
T2 F R g
d 1
T _xCOt xz—x2+1
1 1 1
—C8C " Xx _——

3.8 EXERCISES

Preliminary Questions

. d d
1. Which differentiation rule is used to show = siny =cosy d—i;-'?

2. One of (a)—(c) is incorrect. Find and coirect the mistake.

@ dfy- sin(y?) = 2y cos(y2)

© L sin?) = 2y cos(y?)
dx

®) 4 sin(x2) = 2x cos(x?)
dx

3. On an exam, Jason was asked to differentiate the equation

x2+2xy+y3=7

Find the errors in Jason’s answer: 2x + 2%y’ -+ 3y% = 0.

d
4. Which of (a) or (b) is equal to T {xsin)?
x

dr da:
(a) (xcost)— () (xcost)— +sint
dx . dx

tive

! _—
g(x)_x2+1

6. What does the following identity tell us about the derivatives of

sin~! x and cos™1 x?

. —1 -1 _.J'l."
sin " x4 cos I—E

Exercises , 3

1. Show that if you differentiate both sides of x* +2y3 = 6, the re-
sult is 2x + 6y2§;‘;' = 0. Then solve for dy/dx and evaluate it at the
point (2, 1). ‘

2. Show that if you differentiate both sides of xy + 4x + 2y = 1, the
resoltis (x + 2)% + y + 4 == 0, Then solve for dy/dx and evaluate it
at the point (1, —1).

In Exercises 3-8, differentiate the éxpression with respect to x, assum-
ing thaty = f(x).

3. x2y3 4, x

6.

In Exercises 9-26, calculate the derivative with respect o X

9. 10.

.

13.
15.
17.-

19.

v 23,

tan{xy)

3y +22 =5
x2y+ 223y =x+y
Ri=1

y X

LA
x+y y
Y23 4 32 = 1

+1 x2 4 x
¥ -_—=
y .

.sin{x 4+ y)=x+cosy

xe¥ =2xy +y°

12,
14.

16.

18.

|~
B

B

5. (x2 +y2)32

8. /¥
yr -2y =4x3 +x

xy24x2y —x3 =3

at=1
1 1
«/JC+S=;+;

212 4323 = gy

. sin(xr) =1

. tan(x2y) = (x +y)*

. &Y =sin(y?)

25. Inx +lny=x—y 26, In(x2 4 y2) =2+ 4

In Exercises 27-30, compute the derivative at the point indicated with-

out using a calculator.

27.y=éin_1x, x=g 28.y=tau_1x, x=%
29, y=sec~lz, x=4 30, y = arccos(4x), x= %
In Exercises 31-44, find the derivative.
3 - - in~1 . = i .
1. y =sin"}(7x) 32, y = arctan (3)
33. y =cos~!(x?) ' 3. y=sec”l@g+ 1)
35. y=xtan~lx 36, y =5 F
37, y = arcsin(e®) 38, y =csex—D)
1
39 y=v1-12+sin"t 40. y = tan™} (Ti;)
-1
41. y= (tan"1 x)3 _ 42. y = c?s_l x
sin™  x
43. y=cos 1l —secls 4. y = cos ¥ (x +sin~!
i
45. Use Figure 8 to prove that (cos™! x) = — .
Vi—x2
1
v1-x?

¥

x
FIGURE 8 RigHt triangle with y = cos™lx.

x) .

5. Determine which inverse trigonometric function g has the deriva- |

|
1
)
|
i



46, Show that (tan—1 x)’ = cosz(tan_1 x) and then use Figure 9 to
prove that (tan—1x) = (x2 + 1)~ L.

V1 +a2

1
FIGURE 9 Right triangle with y = tan! x.

47. Let y = sec™ ! x. Show that tany = +/x2 — 1 if x > 1 and that
=—v/x2 ~1ifx < ~1.Hint:tany > Oon (0, &) andtan y < 0
any =—vx x < =1 Hint:tany > 0on (0, §) andtan y <

on (%, r )
48. Use Exercise 47 to verify the formula

(sec™1x) =

1
[x[vx2 =1

49. Show that x + yx~! =1 and y == x — x? define the same curve
[except that (0, () is not a solution of the first equation] and that im-

* plicit differentiation yields ' = yx~! ~ x and y’ = 1 — 2x. Explain
why these formulas produce the same values for the derivative.

50. Use the method of Example 4 to compute % |patP=
thecurvcy % +;v x4 —1x+y=5.

(2,1)on

‘In Exercises 51 and 52, find dy/dx at the given point,

5L (x+22 -6y +3% =3, (1,-1)
52, sin2(3y) =x+9, (3—;—5 %)

In Exercises 53-60, find an equation of the tangent line at the given
point.

53 xy+x2y2 =6, (2,1)
55, 22 4 siny = xy2 + 1, (1;0)

5. sin(x —y) =xcos(y+ %), (§.%)

57, 2212 4 ay~12 = xy, (1,4) 58. x%e¥ +ye* =4, (2,0)

59. 2y -2 (o4
¥

60, 2516 =l o 4,2)

61. Find the points on the graph of y2 = x> — 3x + 1 (Figure 10)
where the tangent line is horizontal.

(8) First show that 2yy’ = 3x% — 3, where y’ = dy/dx.

(b) Do not solve for y'. Rather, set y" = 0 and solve for x. ThlS yields
Wo valyes of x where the slope may be zero.

{¢) Show that the positive value of x does not correspond to a point on
the graph.

(@ The negative value corresponds to the two points on the graph
- Where the tangent line is horizontal. Find their coordinates.

AN

2Beyon a1

i

o
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¥y
'y
2...
:/!\ $ =X
AL
i

_FIGURE 10 Graphof y? =x3 —3x + 1.

62. Show, by d1fferent1atmg the equation, that if the tangent line at a
point (x, ¥) onthecurvex ¥y — 2x + 8y = 2ishorizontal, thenxy = 1.
Then substitute y = x 1 in x2y — 2x + 8y = 2 to show that the tdn-
gent line is horizontal at the points (2, 2) and (—4,-1).

63. Find all points on the graph of 3x2 + 4y2 + 3xy = 24 wheic the
tangent line is horizontal (Figure 11).

-
N

FIGURE 11 Graph of 3x? + 4y? + 3xy = 24.

64. Show that no point on the graph of x2 — 3xy + % = 1 has a hor-
izontal tangent line.

65. Figure 1 shows the graph of y* + xy = x? — x + 2. Find dy/dx
at the two points on the graph with x-coordinate 0 and find an equation
of the tangent line at (1, 1).

66. Folium of Descartes The curve x> + y3 = 3xy (Figure 12) was
first-discussed in 1638 by the French philosopher-mathematician Reng
Descartes, who called it the folium (meaning “leaf”), Descartes’s sci-
entific colleague Gilles de Roberval called it the jasmine flower. Both
men believed incorrectly that the leaf shape in the first quadrant was
repeated in each quadrant, giving the appearance of petals of a flower.
Find an equation of the tangent line at the point (% , %)

Y
24
:\ 0 —>x
-2 2
—al

FIGURE 12 Folium of Descartes: x3 - y* = 3xy.

67. Find a point on the folium x? + y* = 3xy other than the origin at
which the tangent line is horizontal.
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. Plot x° + y3 = 3xy + b for several values of b
and describe how the graph changes as b — 0. Then compute dy/dx
at the point (bll 3, 0). How does this value change as b — co? Do your
plots confirm this conclusion?

69. Find the x-coordinates of the points where the tangent line is hor-
izontal on the trident curve xy = 2 -5x2 42— 1, so named by

. Isaac Newton in his treatise on curves.published in 1710 (Figure 13).
Hint: 222 —5x2 + 1= (2x — D(x% ~2x - 1).

—20 1
FIGURE 13 Trident curve: xy = x> — 5x2 4+ 2x — 1.

70, Find an equation of the tangent line at each of the four points on the
curve (x2 + y2 — 4x)? = 2(x% + y%) where x = 1. This curve (Figure
14) is an example of a limagon of Pascal, named after the father of the
French philosopher Blaise Pascal, who first described it in 1650.

-3+
FIGURE 14 Limagon: (x2 + y2 — 4x)% = 2(x2 + y2).

71. Find the derivative at the points where x =1 on the folium
(2 + yh? = Zxy?. See Figure 15.

24

‘ 25
FIGURE 15 Folium curve: (x2 + yz)?‘ = —nyz.

72. CAS Plot (x2+322 =122 —y2)+2 for —4<x <4,
—4 < y <4 using a computer algebra system. How many horizon-
tal tangent lines does the curve appear to have? Find the points where
these occur.

73. Calculate dx/dy for the equation y* +- 1 = y% - x2 and find the
points on the graph where the tangent line is vertical.

=

74. Show that the tangent lines at x = 1 & +/2 to the conchoid with |
equatien {x — 12(x2 + y%) = 2x2 are vertical (Figure 16).

—i

-2+

FIGURE 16 Conchoid: (x — 1)*(x% + y%) = 2x2.

75. CAS  Use a computer algebra system to plot y2=x*—dxfor
—4 < x <4, -4 <y <4.Show thatif dx/dy =0, then y = 0. Con- |
clude that the tangent line is vertical at the points where the curve |
intersects the x-axis. Does your plot confirm this conclusion?

76. Show that for all points P on the graph in Figure 17, the segments
O P and P R have equal length. '

y  Tangent line

FIGURE 17 Graph of 22 — y2 = a2,

In Exercises 77-80, use implicit differentiation to calculate higher
derivatives.

77. Consider the equation y — %xz =1
(a) Show that y/ = x/y* and differentiate again to show that

n o =29y
}’4

{b) Express ¥ in terms of x and y using part (a).

78. Use the method of the previous exercise to show that y” = — y3
on the circle x? + y2 = 1.

79. Calculate y” at the point (1, 1) on the curve xy? 4+ y —2 = 0 by :
the following steps:

(a) Find ¥ hy implicit differentiation and calculate y at the point
(1, 1.

(b) Differentiate the expression for y’ found in (a). Then compute y”
at (1, 1) by substituting x = 1, y = 1, and the value of ' found in (a). :

80. Use the method of the previous exercise to compute y” at the point
(l,l)onthecurvex3+y3=3x+y—2. 5

In Exercises 81-83, x and y are functions of a variable t and use implicit |
differentiation to relate dy/dt and dx /dt. ’ i

81. Differentiate xy'= 1 with respect to t‘ and derive the relation
dy  _ydx ’

dt ' x dt’
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g2. Differentiate

' X+ 3xy2 =1 -
with respect to ¢ and express dy/dt in terms of dx/dt, as in Exer-
cise 8L ' :

43, Calculate dy/dt in terms of dx/dt.

(a) x3'—)’3'—"1
i () y4+2xy+x2=0

,
v
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84. E’ The volume V and pressure F of gas in a piston (which
vary in time ¢) satisfy PV3/2 = C, where C is a constant. Prove that

dP/dt _
dvydr

_3r
2V

The ratio of the derivatives is negative. Could you have predicted this
from the relation PV3/2 = C7

Further Insights and Challenges

85, Show thatif P lies on the intersection of the two curves x2 — y2 =
¢ and xy = d (¢, d constants), then the tangents to the curves at P are
perpendicular. '

86, The lemniscate curve (x2 + y2)% = 4(x% — y) was discovered
by Jacob Bernoulli in 1694, who noted that it is “shaped like a figure 8,
or a knot, or the bow of a ribbon.” Find the coordinates of the four
points at which the tangent line is horizontal (Figure 18).

14 .
FIGURE 18 Lemniscate curve: (x2 + y2)2 = 4(x% — y?).

87. Divide the curve in Figure 19 into five branches, each of which is
the graph of  function. Sketch the branches.

P

FIGURE 19 Graphof y° — y = x2y +x + 1.
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