Name:

1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function.

T $\quad \mathrm{F} \quad \frac{4 x+3 y}{4 z}=\frac{x+3 y}{z}$
T \quad F $\quad \lim _{x \rightarrow a} f(x)=f(a)$
$\mathrm{T} \quad \mathrm{F}$ If f is continuous, then $f^{\prime}(r)$ exists.
$\mathrm{T} \quad \mathrm{F} \quad f^{\prime}(2)$ is the slope of the line tangent to f at $x=2$.
$\mathrm{T} \quad \mathrm{F}$ If f is continuous, $f(1)=5$, and $f(4)=-4$, then f has a root between $x=0$ and $x=4$
$\mathrm{T} \quad \mathrm{F}$ If $\lim _{x \rightarrow a} g(x)=0$, then $\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ does not exist.
$\mathrm{T} \quad \mathrm{F} \quad \lim _{x \rightarrow-1}\left(x^{3}+5 x\right)=-6$
Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [2] (§2.7 \#20) Let f be the function graphed with the solid line and note that the dotted line is the line tangent to f at $x=4$. Find:
(a) $f(4)$
(b) $f^{\prime}(4)$

3. Let f be a piece-wise defined function defined by $f(x)= \begin{cases}(x+2)^{2} & \text { if } x \leq 0, \\ 2 \log _{4}(x) & \text { if } 0<x,\end{cases}$
(a) [2] (Quiz1 \#1) Graph f on the axes provided.
(b) [1] (§2.2 \#12) Determine the values of c for which $\lim _{x \rightarrow c} f(x)$ exists.

(c) [3] (WebHW3 \#11) Evaluate the following (if they exist!)

$$
\lim _{x \rightarrow 4^{+}} f(x) \quad f(0) \quad \lim _{x \rightarrow 0^{-}} f(x)
$$

4. [4] Find the limit if it exists, or explain why it does not exist.
(InfLimitsWks \#1)
$\lim _{x \rightarrow \infty} \frac{x^{2}-2}{x^{3}-1}$
(PracticeExam \#4)
$\lim _{x \rightarrow \infty} \arctan (x+2)$
5. [4] Find the limit if it exists, or explain why it does not exist.

$$
\begin{aligned}
& (\S 2.5 \# 36) \\
& \lim _{x \rightarrow \pi} \cos (x+\sin (x))
\end{aligned}
$$

(§2.3 Lecture)

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{\pi}{x}
$$

6. [5] (ContWks \#6) Sketch a graph of a function α that satisfies all of the following:
(a) $\alpha(2)=2$
(b) $\lim _{x \rightarrow 2} \alpha(x)=-3$
(c) $\lim _{x \rightarrow \infty} \alpha(x)=-3$
(d) α is continuous for $-4 \leq x \leq 1$
$\left.\begin{array}{|l|l|l|l|r|r|r|r|r|r|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
7. [3] Write the algebraic rule or the function α you created in the problem above.
8. Consider the graph of the piece-wise defined function g to answer the following questions
(a) [1] (WebHW2 \#1) $g(1)$
(b) [1] (WebHW2 \#1) $\lim _{x \rightarrow 3} g(x)$
(c) [1] (Quiz2 \#3) $g^{\prime}(3)$

(d) $[2]$ (Quiz2 \#3) $\left.\frac{d}{d x} g\right|_{x=0}$
(e) [4] (WebHW5 \#6) Draw a graph of $g^{\prime}(x)$

9. (WebHW5 \#3) [5] Let $f(x)=4 x-x^{2}$. Find the equation for the line tangent to the graph of f, when $x=1$.
10. Recall Newton's Law of Cooling: If D_{0} is the initial temperature difference between an object and its surroundings, and if its surroundings have temperature T_{s}, then the temperature of the objects at time t is modeled by the function

$$
T(t)=T_{s}+D_{0} e^{-k t}
$$

where k is a positive constant that depends on the type of object.
Find $\lim _{t \rightarrow \infty} T(t)$ and interpret the result as a scientist.
(a) [3] Dr. Card's body is found in Joy 109 by a student. At 7:52am the police arrive noting the temperature in the room is $67^{\circ} \mathrm{F}$ and the bodies temperature is 80°. At 8:02 the police noticed that the body was now $78^{\circ} \mathrm{F}$. Let t be the time since the body was found and create a function C to describe Dr. Card's body temperature as a function of t.
(b) [2] Dr. Vanderpool arrives on the scene and insists on having you compute $\lim _{x \rightarrow \infty} C(t)$ and explain its meaning to the police officers.

