1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let f be a function defined everywhere.

(T) F All local extrema numbers are also critical numbers.

T (F) If f has a local minimum or maximum when x = 4, then f'(4) = 0.

T F If f is such that f'(4) DNE, then there is a local minimum or maximum when x=4.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

2. [7] (Exam 2 #2) Sketch a graph and then find a formula of an example function f that satisfies the following conditions:

(d)
$$\lim_{x \to 1^{-}} f(x) = -\infty$$

3. (Exam 1 #3) The graphs of f and g are shown below. Find the exact value (if possible):

$$f(x) = \begin{cases} x+1 & \text{if } x \le 1\\ 1 & \text{if } x = 1\\ -2 & \text{if } 1 < x < 2\\ (x-3)^2 \dotplus 2 & \text{if } 2 \le x \end{cases}$$

[1] (WebHW2#1) $\lim_{x \to 1^+} f(x)$

[3] (§3.4 #65)
$$(f \circ g)'(4)$$
 Chain $(f \circ g)'(4)$

[3] (§3.4 #65)

$$(f \circ g)'(4)$$
 Croin (Je &)
 $(f \circ g)'(4)$ Croin (Je &)
 $(f \circ g)'(4)$ (4)
 $(f \circ g)'(4)$ (4)
 $(f \circ g)'(4)$ (4)
 $(f \circ g)'(4)$ (5)
 $(f \circ g)'(4)$ (7)
 $(f \circ g)'(4)$ (8)
 $(f \circ g)'(4)$ (9)
 $(f \circ g)'(4)$ (10)
 $(f \circ g)'(4)$ (10)

[3] (PracticeFinal #4) Sketch the graph of g'(x) on the blank set of axes to the right.

$$g(x) = \begin{cases} x^2 - 1 \\ (x - 1)^2 & \text{if } -1 \le x < 2 \\ -2x + 7 & \text{if } 2 \le x \le 4.5 \end{cases}$$

[1] (WebHW2#1) $\lim_{x\to 2}g(x)$

$$(f \cdot g)'(4)$$
 product (4)

- 4. Find the following limits if they exist. Make sure you show your work and justify your conclusions!
 - [3] (§2.2 Example 8)

By the by Little principal

$$\lim_{x \to 0} \frac{\sin(6x)}{\sin(2x)\cos(6x)} \quad \text{algebra Ones}$$

$$= \lim_{x \to 0} \frac{\sin(2x)\cos(6x)}{\sin(2x)\cos(6x)} \quad \text{algebra Ones}$$

$$= \lim_{x \to 0} \frac{\sin(2x)\cos(6x)}{\cos(6x)} \quad \text{algebra Ones}$$

$$= \lim_{x \to 0} \frac{\sin(6x)\cos(6x)}{\cos(6x)} \quad \text{algebra Ones}$$

(S) LH x =0 - sin(2x) 6 sin(6x) + 2 cos(2x) cos(6x))

$$\frac{6}{0+3} = 3$$
Abahun (4.5)
alexbra (1)

[4] (PracticeExam1 #4)

$$\lim_{x \to \infty} e^x \sin x$$

-ex = ex sinx = ex for all x
(since exis always positive

Notice Im - ex = 0 = 1 in ex

y=ex y=ex

Thus by the squeeze theorem (1)

lin ex sin(y) = 0 (5.5)

Noteria (S) rese (D)

[3] (Limit Wks)
$$\lim_{x \to -2} \frac{2x^2 + 4x}{x + 2}$$

$$= \lim_{x \to -2} \frac{\partial_x (x/2)}{x/2}$$

$$\lim_{x \to -2} \frac{2x^2 + 4x}{x + 2} \quad \text{rwheton (5)}$$

$$= \lim_{x \to -2} \frac{2x(x/2)}{x/2} \quad \text{cancel (5)}$$

[2] (WebHW16 #1)

8. Find the most general antiderivative for:

$$y = x - 8$$

$$\frac{1}{3} x^2 - 3x + C$$

Check 's 5 x2-3x+c (6x2-8x+c) 5-2x-8/ [2] (Lecture 3/5) $y = 5^x \ln(5)$ Check:

9. The graph of $y = \frac{1}{x}$ is shown to the right along with the vertical lines x = e and x = 1.

= he-ln1 enal@ = 1-0=1 notation@s =1-0=1

(b) [1] (Lecture 3/5) Explain what you found in part (a) in terms of area.

The shabed eses

is low

right area (5)

Note: The 1st problem to worker up on the Great Geom Winter 12 AM \$10

- 10. [5] Choose only *ONE* of the following. Clearly identify which of the two you are answering and what work you want considered for credit.
 - (Word Wks2 #10) A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 12ft³/min, how fast is the water level rising when the water is 6 inches deep?
 - (Exam2 #8) A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the angle between the lader and the ground changing when the bottom of the ladder is 6ft from the well?

wall?

- 11. [5] Choose only *ONE* of the following. Clearly identify which of the two you are answering and what work you want considered for credit.
 - A breeder has been selling 100 labradoodles a year at \$1500 each. A market survey indicated that for each increase in price by \$100, the number of labradoodles sold will decrease by 5 a year. Use calculus to find out what price the breeder should set so as to maximize his/her revenue?
 - (Word Wks #1) A fence 17 ft tall runs parallel to the tall building at a distance of 9 ft from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?

