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1. [6] TRUE/FALSE: Circle T in each of the following cases ifthe statement is always
true. Otherwise, circle F. Let f be a function defined everywhere.

@ F If lim f(z) = o0 and lim g(z) = 0, then lim [f(z) - g{z)] = co.

T T—00 IT—00

T @ If f is continuous at z, then f is differentiable at z.’

] — 1)1 f— -1y
T lim 08(2) = lim (z — 1)(logy ()’ — (logy(z))(z — 1) by L'Hospital’s Rule.
e—1 — 1 z—1 (z — 1)2

@ F All local extrema numbers are also critical numbers.
T @ If f has a local minimum or maximum when = = 4, then f/(4) = 0.

T @ If f is such that f/(4) DNE, then there is a local minimum or maximum when z = 4.

Show your work for the following problems. The correct answer with no
supporting work will receive NO credit.

2. 7] (Exam 2 #2) Sketch a graph and then find a formula of an example function f that
satisfies the following conditions:

(a) f is not differentiable. R A . 54 I R

when z = —4,

{(b) f is not continuous
when z = —4,

-(c) f'(3) =—1, and

(d) lim f{z)=—-o0
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3. (Exam 1 #3) The graphs of f and g are shown below. Find the exact value (if possible):
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[1] (WebHW241)
lim f(z)
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2] (§2.3 #2f)
Lim logs(7 -+ f(z))
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[3] (§3.4 #65)
- (fog)(4)
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[3] (PracticeFinal #4) Sketch the

graph of ¢'(z) on the blank set of
axes to the right.
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lim g(z)
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[3] (Derivative Wks)
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4. Find the following limifs if they exist
conclusions!

[3] (§2.2 Example 8)
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[4] (PracticeExaml #4)
lim_e"sinz
g
Mde -\ Eoewt | G oa\ ¥
=

___e‘f é@,¥ an Y é Q\f C}DC C‘}j&z k4

%
CRETTS ol M‘M@ DR

}\1%(._&, \\\;‘\«- - é, Ty o® \“\.{;‘;\ 65

B L

¥ s
7

H e

%WE'NW?"' “;Z%*::W’”“’d
.”?f“ B e,

|

P weo!

{ “ e L

¢ \

’q‘u%‘;’a\}cg S W e

TETRA = }
é g B
‘F =) - c-ﬁﬁ

M‘i‘&}i&} £~ gi;:@ “3‘{? S @

Make sure you show your work and justify your
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[3} (Limit Wks)
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5. Find i‘i for each of the following: (Do not simplify!)
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6. The equation z? +4y° =5 C %} / s2b 2 -

defines an ellipse shown to the right.
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b)‘i}j@ Derivative Wks #4) Find the points on the elhpse lin §5, s
parallel to the line 2y + z = 4. - n ﬁ; ¥
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7. [3] (Quiz 5 #1) If g(2) = 7and —3 < ¢'(z) < 1 for 2 < z < 5, how small can g(5)
possibly be? Briefly justify your answer.
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8. Find the most general antiderivative for:
[2] (WebHW16 #1) [2] (Lecture 3/5)
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9. The graph of y = % is shown
to the right along with the vertical
lines x = e and x == 1.

(a) [3] (Lecture 3/5) Find fle ch- dz,
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(b) [1} (Lecture 3 / 5) Explain what you found in part (a) in terms of area.
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10. [5] Choose only ONE .of the following. Clearly identify which of the two you are
answering and what work you want considered for credit

(Word Wks2 #10) A trough is 10 ft long and its ends have the shape of isosceles

triangles that are 3 ft across at the top and have a height of 1 ft. If the trough

is being filled with water at a rate of 12ft® /min, how fast is the water level rising
when the water is 6 inches deep?

(Exam?2 +#8) A ladder 10 ft long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a rate of 1 ft /s, how fast is the angle between
the lader and the ground changing when the bottom of the ladder is 6ft from the
wall?
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11. [5] Choose only ONE of the following. Clearly identify which of the two you are
answering and what work you want considered for credit.

e A breeder has been selling 100 labradoodles a year at $1500 each. A market survey
indicated that for each increase in price by $100, the number of labradoodles sold
will decrease by 5 a year. Use calculus to find out what price the breeder should
set so as to maximize his/her revenue?

e (Word Wks #1)} A fence 17 {t tall runs parallel to the tall building at a distance
of 9 ft from the building. What is the length of the shortest ladder that will reach
from the ground over the fence to the wall of the building?
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