TMATH 124am: Quiz 2

Show *all* your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

1. [3] (§2.5 #5) Sketch the graph of an example function f that satisfies the following conditions:

(a) $\lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x)$					$y_{4}^{5\uparrow}$					
(b) f is discontinuous at -2					3					
					1					
(c) f is continuous from the right at 2	-4	-3	-2	-1	0	1	2	3	4	,5
the light at -2					-1					-1
					-2					
					-3			10		
					-4					

2. [2] (WebHW3 #10) If we know $3x - 5 \le f(x) \le x^2 - 3x + 4$ for all $x \ge 0$, find $\lim_{x \to 3} f(x)$. Justify your conclusions

3. The graph of a function R is given below:

(a) [3] (Con't wks) State the numbers at which R is discontinuous.

(b) [2] (§2.3 #2) Evaluate $\lim_{x \to 1^+} [2R(x) - 5]$