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1. [6] TRUE/FALSE: Circle T in each of the following casesime statement is always
true. Otherwise, circle F. Let f be a function defined everywhere.

A () 2 ecd T O If lim f(z) = o0 and lim g(z) = oo, then lim [f(z) — g(z}] = 0.
C\%\: f{ T—00 T 00 =00

U
@ F If f is differentiable at z, then f is continuous at z.

2, %.) L loga(@) | (m = 1)(logy(2)) — (loga(@)(z = 1)

-3 U; ¥y l)E z—1 1 —1 z—1 (2;' - 1)2

by L’Hospital’s Rule.

@ F All local extrema numbers are also critical numbers.

w\”wz’:b T @ If f has a local minimum or maximum when z = 4, then f(4) = 0.
E M}\ T Ty If fis such that f/(4)=0, then there is a local minimum or maximum when z =4.
{
4

Show your work for the following problems. The correct answer with no
supporting work will receive NO credit.

2. [7] (Exam ‘2 #2) Sketch a graph and then find a formula of an example function f that
satisfies the following conditions:

(a) f is not differentiable
when z =1, v \’\

(b) f is continuous when z = 1,‘/‘/(\ i 7
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{¢) f[(-3)=1,and .~

(d) lim f(z)=—4 % x\
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3. (Exam 1 #3) The graphs of f and g are shown below. Find the exact value (if possible):
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1 ifxr=1
fe) =9 5 ifl<z<?

(z—-38)*+2 if2<z
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[3] {PracticeFinal #4) Sketch the

graph of ¢'(z) on the blank set of
axes to the right.
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i
(z) = (F==1)® f-1<2<2
] —2247 if2<z<45

[1] (WebHW2:1)
lim g(z)
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[3] (Derivative Wks) )
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4, Find the following limits if they exist. Make sure you show your work and justify you

conclusions!
[3] (§2.2 Example 8}
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[4] (PracticeExaml #4)

lim e®sinz
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[4] Quiz 3 #1

lim sin(3z) sin(5x)
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5. Find d" for each of the following: (Do not simplify!)
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6. The equation z2 +4y®> =5 L 3 ) %Z%‘E T
defines an ellipse shown to the right. 1 ""5'--\
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(a) [3] (Exam 2 #7) Find the =X 1 o] 1 2/ 3 é’i\; >l
equation of the line tangent to / X \
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(b )Z{EEQ (Derivative Wks #4) Find the points on the elhpse whose tang t~lines are e
parallel to the line 2y + z = 4 _ @j e




s T [3) (WebHW13 #12) If g(2) = 7 and -3 < ¢'(z) < 1 for 2 < z < 5, how small can
g(5) possibly be? Briefly justify your answer.
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8. Find the most general antiderivative for:

[2] (WebHW16 #1) [2] (Lecture 3/5)
y—z—5 Ohec: y = 5 In(5)
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9. The graph of y = 'i" is shown
to the right along with the vertical
lines z =eand z = L. y3“ \ ;
(a} [3] (Lecture 3/5) Find feidm, 2 ;
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(b) [1} (Lecture 3/5) Explain what you found in part (a) in terms of area.
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10. {5] Choose only ONE of the following. Clearly identify which of the two you are
answering and what work you want considered for credit.

o (Word Wks2 #10) A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft. If the trough
is being filled with water at a rate of 12ft>/min, how fast is the water level rising
when the water is 6 inches deep?

o (Exam?2 #8) A ladder 10 ft long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a rate of 1 ft/s, how fast is the angle between
the lader and the ground changing when the bottom of the ladder is 6ft from the
wall?
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11. {5] Choose only ONE of the following. Clearly identify which of the two you are

answering and what work you want considered for credit.

e A breeder has been selling 100 labradoodles a year at $1500 each. A market survey
indicated that for each increase in price by $100, the number of labradoodles sold
will decrease by 5 a year. Use calculus to find out what price the breeder should
set 80 as to maximize his/her revenue?

e (Word Wks #:1) A fence 17 ft tall runs parallel to the tall building at a distance
of 9 ft from the building. What is the length of the shortest ladder that will reach
from the ground over the fence to the wall of the building?
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