TMATH 124: Quiz 2

You may use any work of yours that you made from last week. This includes, practice book problems and worked out WebAssign problems. This *does not* include photocopies of notes from the book or tutorials shown on WebAssign. Graphing calculators are also not allowed. In short, you are only allowed to use *work* that you created.

Show *all* your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

- 1. Let $f(x) = \frac{1}{x}$
- y_{4}^{5} (a) [1] Carefully graph f on the axis 3 provided and sketch 2 the line tangent to f when x = -2. 1 x⁵ -4 -3 -2 -1 0 1 2 3 4 -1 -2 -3 -4
 - (b) [3] Use the definition of derivative to find f'(-2).

(c) [1] Find the equation of the line you drew in part (a).

(a) g is not continuous (discontinuous)					$y_{4}^{5\uparrow}$					
when $x = -3$					3					
(b) $\lim_{x \to -\infty} g(x) = 0$					2					
					1			2		
(c) $g(1) = 3$	-4	-3	-2	-1	0	1	2	3	4	75
					-1					A
(d) $g'(1) = 0$					-2					
					-3					
					-4					

2. [2] Sketch the graph of an example function g that satisfies the following conditions:

3. [3] Determine the following, if they exist:

$\lim_{x \to \infty} 5 + \sqrt{x}$	$\lim_{x \to \infty} \sqrt{2x^2 + 1}$
$\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$	$\lim_{x \to \infty} \frac{1}{3x-5}$