EXAM 1 TMath 124

Winter 2011

- 1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let f be a function and x and y be positive numbers.
 - T F $(x+y)^{-2} = \sqrt{x+y}$
 - T F $\lim_{x \to a} [3f(x)] = 3 \lim_{x \to a} f(x)$
 - ${\rm T} \quad {\rm F} \quad \lim_{x \to a} f(x) = f(\lim_{x \to a} x)$
 - T F If f'(a) exists, then $\lim_{x \to a} f(x) = f(a)$.
 - T F The absolute value function is a differentiable function.
 - T F $\frac{d}{dx}(e^x) = xe^{x-1}$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

2. [4] (Quiz 2 #2) Sketch the graph of an example function f that satisfies the following conditions:

(a) f is continuous everywhere but when $x = 3$					$y_4^{5\uparrow}$					
					2					
(b) $\lim_{x \to 3^{-}} f(x) = \infty$				_	1			2		
(c) $f(-1) = 2$	-4	-3	-2	-1	0	1	2	3	4	x5
					-1					A
(d) $f'(-1) = 0$					-2					
					-3					
					-4					

3. Let

$$g(x) = \begin{cases} \cos\left(\frac{\pi}{2}\right) & \text{if } x \le 0, \\ -\frac{1}{2}x + 2 & \text{if } 0 < x < 3. \end{cases}$$

[3] Carefully graph g below.

				3			
				2			
				у			
				1 -			
	20					2 C	
1	-3	-2	-1	0	x 2	3	2
				-1 -			
-				-2			

[3 each] Use the graph above to find the following (if they exist!): $\lim_{x\to 0^+} g(x) \qquad \qquad \lim_{x\to -\infty} g(x)$

g'(2)

 $\lim_{x \to -2} [6g(x) - 5]$

[3] (§2.8 #9) Make a rough sketch of the graph of g'(x):

4. [3 each] (§2.3 #3 & CalcWebW5 #4) Find the limit or explain why it does not exist. $4 - 7r^2$

$$\lim_{x \to -1} (3x^4 + 2x^2 - x + 1) \qquad \qquad \lim_{x \to \infty} \frac{4 - 7x^2}{8x^2 + 3x}$$

lim -	$(2+h)^2 - (2+h) - 2$	$\lim_{x \to \infty} \frac{\sin x}{\cos x}$
$h \rightarrow 0$	h	$\lim_{x \to \infty} \frac{1}{x^2}$

- 5. [3] (CalcWebHW5 #13) If the tangent line to y = f(x) at (4,3) passes through the point (0,2) find the following.
 - (a) f(4)
 - (b) f'(4)
- 6. Let $f(x) = x^2 e$, where e is approximately 2.718.
 - (a) [4] (Nice Derivative Wks #3) Find the equation for the line tangent to the graph of f, when x = 1.

(b) [3] (Nice Derivative Wks #4) Find the point on the graph of f whose tangent line is parallel to the line defined by 3y = x + 3.