EXAM 2 TMath 124

Spring 2023

Show *all* your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. [2] (TrigAcitvity#2) Find
$$\lim_{x \to 0} \frac{\sin(4x)}{6x}$$

2. Identify which derivative rule(s) you can use to find $\frac{dy}{dx}$. Do not find $\frac{dy}{dx}$!!

	Derivative Rule(s)
[2] (ImpExpActivity#5)	
$y = \sqrt{\frac{x-1}{x^4+1}}$	
γ	
[2] (§3.5 #24) $y + x4^y = x^9$	
[2] (WebHW8 #9)	
$y = e^{x^3 - 5x}$	
[2] (WobHW10 #13)	
[2] (Webhi W 10 #15) $u = (\tan(x))^x$	
g ($\operatorname{curr}(w)$)	

3. Use the graphs of f and g below for the following questions.

- (a) [2] (ProductActivity#1) Find an x so that g'(x) does not exist.
- (b) [3] (WebHW8#7) Estimate $\frac{d}{dx}(f(x)g(x))|_{x=0}$

(c) [3] (Quiz3#1) If c(x) = f(g(x)), then estimate c'(4).

(d) [3] (§3.4#72) If h(x) = g(3x - 1), then estimate h'(2).

4. The differentiable functions f and g are defined for all real numbers. Values for f, f', g, and g' for various x values are given in the table.

(a) [4] (PracticeExam#4) Given that $h(x) = \frac{f(x)}{2x+g(x)}$, find h'(1).

$\int x$	f(x)	f'(x)	g(x)	g'(x)
1	3	4	2	6
2	1	5	8	7
3	7	7	2	9

- (b) [3] (§3.10 #52) Find the linearization of f at x = 2.
- (c) [2] (§3.10 #52) Use the linearization of f to approximate f(2.05).
- 5. A particle moves along a hyperbola xy = 4 when x > 0. The graph is shown below with a solid curve. The dotted line is of a dust particle moving along a straight line.
 - (a) [4] (§3.2 #56) Find the point that the particle's movement is parallel to a dust particle moving along the dotted straight line graphed.

(b) [4] (WebHW11#5) When the particle reaches an x value of 1, the y-coordinate is decreasing at a rate of 3 cm/s. How fast is the x-coordinate of the point changing at that instant?

- 6. (WordProblems#9) If C is the cost (\$ out) a company incurs by producing x units of their commodity, the marginal cost MC is equal to $\lim_{\Delta x \to 0} \frac{\Delta C}{\Delta x} = \frac{dC}{dx}$. Similarly, if R is the revenue (\$ in) a company gathers by producing x units on their commodity, the marginal revenue MR is equal to $\frac{dR}{dx}$. Also if P is profit (\$), the marginal profit, MP, is $\frac{dP}{dx}$. Note that Profit=(\$ in)-(\$ out)=Revenue-Cost.
 - (a) [2] A company sells each product for \$450 dollars. Write down the revenue function for the company selling x units.
 - (b) [3] The same company has a cost function of $C(x) = 10,000 + 3x^2$. Find the number x units that should be produced to maximize profit.
 - (c) [2] Explain why economics care when MP = 0.