Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. [2] (TrigAcitvity\#2) Find $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{6 x}$
2. Identify which derivative rule(s) you can use to find $\frac{d y}{d x}$. Do not find $\frac{d y}{d x}$!!

	Derivative Rule(s)
$[2](\operatorname{ImpExpActivity\# 5)}$	
$y=\sqrt{\frac{x-1}{x^{4}+1}}$	
$[2](\S 3.5 \# 24)$	
$y+x 4^{y}=x^{9}$	
$[2]($ WebHW8 \#9)	
$y=e^{x^{3}-5 x}$	
[2]	
$y=(\tan (x))^{x}$	

3. Use the graphs of f and g below for the following questions.

(a) [2] (ProductActivity\#1) Find an x so that $g^{\prime}(x)$ does not exist.
(b) [3] (WebHW8\#7) Estimate $\left.\frac{d}{d x}(f(x) g(x))\right|_{x=0}$
(c) [3] (Quiz3\#1) If $c(x)=f(g(x))$, then estimate $c^{\prime}(4)$.
(d) [3] (§3.4\#72) If $h(x)=g(3 x-1)$, then estimate $h^{\prime}(2)$.
4. The differentiable functions f and g are defined for all real numbers. Values for f, f^{\prime}, g, and g^{\prime} for various x values are given in the table.
(a) [4] (PracticeExam\#4) Given that $h(x)=\frac{f(x)}{2 x+g(x)}$, find $h^{\prime}(1)$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	4	2	6
2	1	5	8	7
3	7	7	2	9

(b) $[3](\S 3.10 \# 52)$ Find the linearization of f at $x=2$.
(c) $[2](\S 3.10 \# 52)$ Use the linearization of f to approximate $f(2.05)$.
5. A particle moves along a hyperbola $x y=4$ when $x>0$. The graph is shown below with a solid curve. The dotted line is of a dust particle moving along a straight line.
(a) $[4](\S 3.2 \# 56)$ Find the point that the particle's movement is parallel to a dust particle moving along the dotted straight line graphed.

(b) [4] (WebHW11\#5) When the particle reaches an x value of 1 , the y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate of the point changing at that instant?
6. (WordProblems $\# 9$) If C is the cost ($\$$ out) a company incurs by producing x units of their commodity, the marginal cost $M C$ is equal to $\lim _{\Delta x \rightarrow 0} \frac{\Delta C}{\Delta x}=\frac{d C}{d x}$. Similarly, if R is the revenue ($\$ \mathrm{in}$) a company gathers by producing x units on their commodity, the marginal revenue $M R$ is equal to $\frac{d R}{d x}$. Also if P is profit (\$), the marginal profit, $M P$, is $\frac{d P}{d x}$. Note that Profit $=(\$$ in $)-(\$$ out $)=$ Revenue-Cost.
(a) [2] A company sells each product for $\$ 450$ dollars. Write down the revenue function for the company selling x units.
(b) [3] The same company has a cost function of $C(x)=10,000+3 x^{2}$. Find the number x units that should be produced to maximize profit.
(c) [2] Explain why economics care when $M P=0$.

