Show all your work (numerically, algebraically, or geometrically) for the following problems. Supporting work is needed to earn credit.

1. The graphs of f and g are given. Use them to estimate the following:

(a) [3] (WebHW3\#2) $\lim _{x \rightarrow 2}(3 f(x)-g(x))$
(b) $[3](\S 2.3 \# 2) f(-1)+\lim _{x \rightarrow-1}(x g(x))$
(c) $[2]\left(\right.$ Quiz2\#1) $g^{\prime}(3)$
2. [5] (Quiz1\#2) Draw one graph for a function $\alpha(x)$, that satisfies all of the following:
(a) $\lim _{x \rightarrow-3} \alpha(x)=-\infty$,
(b) α is continuous on the interval $(-2,2)$,
(c) $\alpha(2)=4$, and
(d) $\lim _{x \rightarrow 2^{+}} \alpha(x)=-1$.
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
3. [4] (Practice Exam\#7) Let $f(x)=3 x-5$. Find the limit (either numerically, graphically, or algebraically) if it exists of $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
4. The solid curve, denoted R, records the distance (in meters) of Ryan from the start line after t seconds. The dotted function records the distance of Julie \& is denoted J.
(a) [1] Who wins the race 100 meter race? 90
(b) [2] (DerivativeActivity \#1) Is there a runner who moves away from the finish line? If so who and when?

(c) [2] (WebHW5 \#4) Estimate Ryan's velocity and $t=20$.
(d) $[2]$ (Quiz2\#1) Estimate $\left.\frac{d}{d t} J\right|_{10}$.
(e) $[3](\S 2.7 \# 16)$ Do the runners ever have the same velocity? If so, when?
5. [5] (WebHW5\#8) Draw one graph for a function $\beta(x)$, that satisfies all of the following:
(a) $\lim _{x \rightarrow \infty} \beta(x)=2$,
(b) β is continuous on the interval $(-4,4)$,
(c) $\beta^{\prime}(1)$ does not exist, and
(d) $\left.\frac{d}{d x} \beta^{\prime}\right|_{-2}=1$.

6. Consider $f(x)=e^{x}-7 x$ graphed to the right.
(a) [3] (WebHW7\#9) Find $\frac{d f}{d x}$

(b) [1] (DerivativeActivity\#5) Estimate when $f^{\prime}(x)=0$
(c) [3] (ExpActivity\#4) Find the equation of the line tangent to f that is also horizontal.
7. (WordProblems\#1) Test makers use item response functions $P(x)$ to determine the difficulty and effectiveness of a given test question. The variable x is the ability of a test taker and $P(x)$ is the probability that the test taker gets the problem correct. By convention we let an "average ability" correspond with $x=0$. Thus $P(0)=.75$ means that a person with average ability has a 75% chance of getting the question correct.
(a) [2] Assume we have a well constructed True/False question. Sketch a possible response function $P(x)$ so that $P(0)=.75$. Note that you do not need to put units on the x axis but should have units on the vertical axis.
(b) [2] On a well constructed question, what do we expect $\lim _{x \rightarrow \infty} P(x)$ to equal? Justify your answer.
(c) [2] Assume the question is a True/False question, find $\lim _{x \rightarrow-\infty} P(x)$. Justify yourself.
