TMATH 124: Quiz 1

Show *all* your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work. No calculators or notes are allowed.

1. Le	et $f(x) = \langle$	$\begin{cases} \pi x + \frac{\pi}{2} \\ 2 \arctan(x) \end{cases}$	$ \begin{array}{l} \text{if } x < 0 \\ \text{if } 0 < x \end{array} $						
(8	a) [3] Care on the s	<i>efully</i> graph <i>f</i> axis provided	¢			y 1.5π			
						π			
						0.5π			
			3	-2	-1	0		2	
(1	5) [1] (8 9 () #19)				-0.5π			
(I	Determine the					-10			
	values or $f(x)$	of <i>c</i> for which) exists.				-1.5π			
	If you a	re having tro	uble with	(a) expla	in how g	you would	find the a	nswer.	

2. [3] (Limits Wks #3) Draw a function g such that both conditions are met:

(a) $\lim_{x \to 2} g(x) = -3$					$y_{A}^{5\uparrow}$					
					3					
(b) $a(2) = 4$					2					
(3) g(2) 1					1					575
	-4	-3	-2	-1	0	1	2	3	4	,5
					-1					л
					-2					
					-3					
					-4					

3. [3] (WebHW2 #1 & $\S2.3$ #2f) For the function h whose graph is given, estimate the value of each quantity, if it exists.

