

Show all your work (numerically, algebraically, or geometrically) for each and simplify. Supporting work is needed to earn credit. There are two sides of this quiz.

1. (WebHW11 \#9) A patrol car is parked 50 feet from a building shown to the right. The revolving light on top of the car turns at a rate of 8 revolutions per minute.
(a) [1] Find θ as a function of x.

$$
\text { Solncantoa } \Rightarrow \tan \theta=\frac{x}{50}+.5
$$

$$
\Rightarrow \theta=\arctan \left(\frac{x}{5}\right)+5
$$

(b) [3] Find how fast the light beam is moving along the wall when the beam makes and angle of 30° with the building wall.
 Vas $d \theta / d t=8 \mathrm{con} / \mathrm{man}+5.5=\frac{8.2 \pi \mathrm{ad}}{\mathrm{min}}=16 \pi \mathrm{rad} / \mathrm{min}$

$$
\begin{aligned}
\theta & =\arctan \left(\frac{x}{50}\right) \\
d \theta / d t & =\frac{1}{1+\left(\frac{x}{50}\right)^{2}} \cdot \frac{1}{50} \cdot d x / d t \\
\Rightarrow \frac{d x}{d t} & =\left(\frac{d \theta}{d t}\right) \cdot 50\left(1+\left(\frac{x}{50}\right)^{2}\right)
\end{aligned}
$$

on $\tan \theta=\frac{x}{50}$

$$
\tan \theta=\frac{x}{50}
$$

$$
\left\{\begin{array}{c}
\tan) d d t \\
\left(\sec ^{2} \theta\right) \frac{d \theta}{d t}=\frac{1}{50} \frac{d x}{d t}
\end{array}\right.
$$

$$
\text { so } d x /\left.d t\right|_{\theta=600^{\circ}}=50\left(\sec ^{2}(6)^{\circ}\right) \cdot 16 \pi
$$

$$
=16 \pi 50\left(1+\left(\frac{5 p+\tan 60^{2}}{50}\right)\right.
$$

2. [3] (ExtremeActivity \#1) Draw the graph of a function f that satisfies all of the listed criteria:
f. $)$ (a) f is continuous on $(-3,3) \checkmark$
(b) the only critical points of f (t) $f^{\prime}(-2)$ is not defined
(d) f has a relative minimum at $x=-2$

3. [3] (§4.3 \#78) The graph of g is shown to the right. Sketch a graph of the derivative of g on the axes below.

zeros' (I)

potnverome

