TMATH 124 Quiz 2

Show *all* your work (numerically, algebraically, or geometrically) for each and simplify. Supporting work is needed to earn credit. There are two sides of this quiz.

1. [2] (§2.4 #114) Let f(x) = 2[[x]] where [[x]] is the greatest integer function. Find all x where f is not continuous. Justify your answer.

2. [3] (Continuous Activity #5) Sketch a graph of a function α that satisfies *all* of the following:

(a) $\lim_{x \to 2^-} \alpha(x) = -3$				-	$y_{4}^{5\uparrow}$					
(b) is not continuous at $x =$ (c) $\lim_{x \to \infty} \alpha(x) = 1$	= 2				3 2 1					
	-4	-3	-2	-1	0 -1	1	2	3	4	x ⁵
					-2 -3					
					-4					

3. [3] (WebHW4 #10) Let
$$g(x) = 4x - 2$$
. Find $\lim_{\Delta x \to 0} \frac{g(3 + \Delta x) - g(3)}{\Delta x}$.

- 4. [2] (WebHW5 #16) The graph to the right tracks the population of bacteria P as a function of days.
 - (a) Find $\lim_{x \to \infty} P(x)$.
 - (b) Interpret what your answer above means in terms of bacteria.

