
TMATH 124 Quiz 1

Show all your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

- 1. (WebHW2 #5) Let $f(x) = \begin{cases} (x+2)^2 & \text{if } x \le 0\\ 4\cos(x) & \text{if } 0 < x \end{cases}$
 - (a) [2] Carefully graph f on the axis provided $y_{4}^{5'}$ 3 2 1 x⁵ -3 -2 2 3 -4 -1 0 1 4 -1 -2 -3 -4
 - (b) [1] Determine the values of c for which $\lim_{x \to c} f(x)$ exists.

2. [2] (§2.2 #26) For the function f whose graph is given, estimate the value of each quantity, if it exists.

					v ^{5↑}					
(a) $\lim_{x \to -1} \alpha(x) = 3$					^y 4					
(b) $\lim_{x \to -1} \alpha(x) = -3$					3					
(b) $\lim_{x \to 2^{-}} \alpha(x) = -3$ (c) $\alpha(2) = -1$					2					
(c) $\alpha(2) = -1$					1					
	-4	-3	-2	-1	0	1	2	3	4	x5
					-1					л
					-2					
					-3					
					-4					

3. [3] (Limit Activity #3) Sketch a graph of a function α that satisfies all of the following:

4. [2] (Quiz1 Winter2016) Write the algebraic rule for the function α you created in problem 3.