Quiz 3

Show all your work. Reasonable supporting work must be shown to earn credit. There are two sides to this quiz.

1. [3] (ExponentActivity pg2) Simplify: $\frac{-1^{2}}{9} x^{2} y^{3}\left(3 x^{3}\right)^{2}$

$$
\begin{aligned}
& -\frac{1}{9} \cdot \frac{1}{9} \cdot x x y y y 3 x^{3} 3 x^{3} \\
= & -\frac{1}{81} x_{x} y y y 3 x x+3 x x x \\
= & \frac{-1}{8} 9 x^{3} y^{3} \\
= & -\frac{1}{9} x^{3} y^{3}
\end{aligned}
$$

2. (WebHW8 \#30) It is known that the population (P measured in thousands) of a bug is modeled well by $P(t)=\frac{16}{3+a e^{k t}}$ where a and k are determined locally in geographic regions. In this region measurements have confirmed that $P(0)=2$ and $P(1)=\frac{1}{2}$.
(a) [1] Are the population of bugs increasing or decreasing?

$$
\text { decreasing }+1
$$

(b) [3] Find a and k so that you have a model of the bug's population for our local region.
3. The graph to the right is the graph of the form $f(x)=\log _{b}(x)$
(a) [1] (WebHW7 \#20) What is the domain?

(b) $[2](\S 3.2 \# 72)$ Find b to write the explicit rule/expression for f.

$$
\begin{aligned}
& \text { twas }(1,0) \Rightarrow 0=\log _{0}(1) \Rightarrow b^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left(\begin{array}{l}
\text { coder }
\end{array}\right. \\
\text { and (1) } \\
\text { and }
\end{aligned}
\end{aligned}
$$

$$
\text { so } \quad f(x)=\log _{3}(x)
$$

