Quiz 1

Show all your work. No credit is given without reasonable supporting work. There are two sides to this quiz.

1. [3] (WebHW1 \#6) Let $f(x)=\frac{x}{\sqrt{9-x^{2}}}$. Find $f\left(\frac{4}{3}\right)$ and simplify.

$$
\begin{aligned}
f(4 / 3)=\frac{\frac{4}{3}}{\sqrt{9-(4 / 3)^{2}}} & =\frac{4 / 3}{\sqrt{9-16 / 9}}=\sqrt{\sqrt{\frac{81}{9}-16 / 9}}=\frac{4 / 3}{\sqrt{\frac{65}{9}}} \text { simplified } \\
t 1 & =\frac{4 / 3}{\frac{\sqrt{65}}{\sqrt{9}}}=\frac{4}{3} \div \frac{\sqrt{65}}{\sqrt{9}}=\frac{4}{3}=\frac{3}{\sqrt{65}}=\frac{4}{\sqrt{65}} \text { or } \frac{4 \sqrt{65}}{65} \approx 40.6
\end{aligned}
$$

2. (Quiz1 Winter 2016) Define G that takes numbers to the letter that it starts with when written in english. For example, $G(2)=\mathrm{t}$ since two begins with the letter t.
(a) [1] $(\S 1.1 \# 30)$ Is the point $(6, s)$ on the graph of G ? Why or why not?

$$
\begin{aligned}
& \text { +.5 yes } C_{7}(6) \text { returns the first letter of the word six } \\
& \text { (.5) which is } s \text {. }
\end{aligned}
$$

(b) [1] Is G a function? Why or why not.

3. Let g be the piecewise defined graph shown below.
(a) $[1](\S 1.3 \# 56)$ Find $g(-3)$

(b) $[2](\S 1.1 \# 44)$

Estimate x such that $g(x)=0$.
iP. the x-intercepts (1.5)

(c) [1] (§1.1 \#44) Identify or estimate the y intercept.

$$
-1 / 2
$$

(d) [1] (FunctionWks \#1) What is the domain of g ? $x \neq 1$ or all \boldsymbol{H}^{\prime} s bot 1 or

$$
x \text { values } \$.5
$$

$$
(-\infty, 1) \cup(1, \infty)
$$

got it ti

