NAME:



1. [7] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let x & y be positive real numbers.

T (F) 
$$\frac{3x+y}{3z} = \frac{x+y}{z}$$
  $\frac{3x+y}{3z} \neq \frac{3(x+y)}{3z} = \frac{x+y}{z}$ 

T F 
$$2^x + 5x = 8$$
 is a polynomial  $\chi$  is charged in  $\mathcal{J}^{\chi}$ 

T 
$$(F)$$
  $4^{\frac{1}{2}} = 4^{-2}$   $4^{\frac{1}{2}} = \sqrt{4} = 2$   $\times$   $\frac{1}{16} = \frac{1}{4^2} = 4^{-2}$ 

T) F 
$$\log_5(\log_5(5)) = 0$$
  $\log_5(\log_5(5)) = \log_5(1) = 0$ 
T) F  $(x^2)^3 = x^6$   $\chi^2 \times \chi^2 = (\chi \times 1) \times \chi^2 = \chi^2 \times \chi^2 \times \chi^2 \times \chi^2 = \chi^2 \times \chi$ 

(T) F 
$$(x^2)^3 = x^6$$
  $(x^2)^3 = (x^3)(x^3)(x^3) = x^6$ 

$$T F x^0 = 0 X^0 = 1$$

T (F) 
$$\log_2(x+y) = \log_2(x) + \log_2(y)$$
  $\log_2(x+y) = \log_2(x) + \log_2(y)$ 

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice) questions).

2. [3] Explain what an exponential function is as you would to a 5th grader.

true (F)
complete (F)
cornect level (F,5)
shelf (F,5)





| 3. [4] Write a polynomial $p$ that satisfies the following criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • as $x$ goes to $\infty$ , then $y$ goes to $-\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Note: there is more than one right answer!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. [3] (LogPractice #1) If you invest \$5,500 with an annual rate of 7% compounded quarterly, how much money do you have after 10 years? $ \begin{array}{c} (x) = (x - 2)(x + 2)(x - 3)(x - $ |
| 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| julius salainen kalkaan mistä sein kolonja kontaan kaita kan kirja kan jirja en en vään ja<br>Lavanta sajattu egi siinjää säintä sitemistesi salain kan tila kan vään ja kan vää siittimanja sala.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5. [5] The area of a rectangle is $5x^4 - 15x^3 + 22x^2 - 6x + 8$ cm <sup>2</sup> . Its length is also a function of $x$ and is $x^2 - 3x + 4$ cm. Find the width as a function of $x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

function of x and is  $x^2 - 3x + 4$  cm. Find the width as a function of x.

According to width (4.5)  $5x^4 - 15x^3 + 20x^2 - 6x + 9 = (x^2 - 3x + 4)$  and  $x^2 - 3x + 4$   $5x^4 - 15x^3 + 20x^2 - 6x + 9$   $5x^2 - 3x + 4$   $5x^4 - 15x^3 + 20x^2 - 6x + 9$   $-(5x^4 - 15x^3 + 20x^2)$   $-(5x^4 - 15x^3 + 20x^2)$   $-(2x^2 - 6x + 9)$ 

- 6. Simplify:
  - (a) [2] (WebHW7 #7)

$$\frac{5(x^{-3}y)^{-2}}{(5x)^2} = \frac{5(x^{-3})^{-3}}{5^2 x^3} = \frac{5x}{5^2} \frac{4}{x^3}$$

$$= \frac{x^4}{5y^2}$$

(b) [2] (PracticeExam #4)

$$4 + \log_3(\frac{1}{3^2})$$
 $4 + \log_3(3^{-2})$ 
 $4 - 2 = 2$ 

7. Find all x that satis

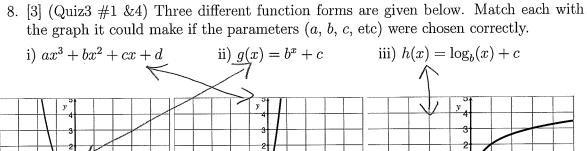
b) [2] (PracticeExam #4)
$$4 + \log_3\left(\frac{1}{9}\right)$$

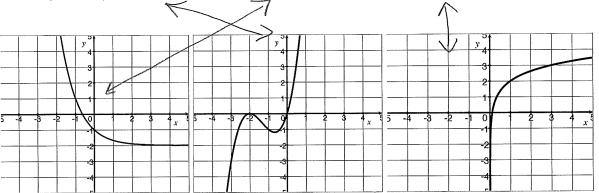
$$4 +$$

-2 1/2 = X

(a) [4] (WebHW8 #22)  $\log_5(2x+5) - \log_5(x+5) = 1$ 

log property logs 
$$\left(\frac{3x+5}{x+5}\right) = 1$$
  $7-20 = 3x$ 


ody occurat  $\sqrt{2x+5} = 5$ 
 $\sqrt{2x+5} = 5(x+5)$ 
 $\sqrt{2x+5} = 5(x+5)$ 


(b) [3] (LogPropertySheet#4)  $\frac{11}{1+e^{2x}} = 3$ 

Checkers (1.5) ashin?

$$-\frac{3}{3} = -\frac{3}{1}$$

$$ln(9/3) = 2x = 3 x = 3 ln(9/3) 2,4900$$





[3] For one of the above, find the parameters (a, b, c, etc) that describes the graph that is given. No, doing more will not earn you extra credit

Is given. Ino, doing more will not earn you extra credit.

(1) (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (3) + (

$$-1 = \alpha(-1+2)^{3}(-1)$$

$$-1 = -1 = -1$$

$$4 = (x+2)^{2}x = (x^{3}+4x^{2}+4)$$

$$\alpha(x) = (\frac{1}{2})^{x} - 1$$

$$|z| \sim |z| > |z|$$

 $(x+3)^2x = x^3+4x^2+4x$   $(x)=(x)^2=(x)^3+3$   $(x)=(x)^3+3$   $(x)=(x)^2=(x)^3+3$   $(x)=(x)^3+3$   $(x)=(x)^3+3$  and by 1pm, 200 students had beard if of people who have heard the rumor is modeled by  $\frac{5000}{1+ae^{kt}}$  where t is the number of hours since noon and f(t) is the number of students who have heard the rumor. Find

when  $\frac{3}{4}$  of the student body at UW Tacoma has heard the rumor.

Need how a. t = 5000The student body at UW Tacoma has heard the rumor. t = 5000

(5) First reed to lind a and K

(0,2) =7 
$$d = \frac{5000}{1+ae^{1/2}}$$
 =7  $d = \frac{5000}{1+a}$  =7  $d = \frac{3500}{1+a}$  =7  $d = \frac{3500}{1+a}$  =7  $d = \frac{3500}{1+a}$  =  $\frac{3500}{1+a}$  =7  $d = \frac{3500}{1+a}$  =7  $d = \frac{350$ 

$$(1,20)$$
 =>  $200 = \frac{5000}{1+2499}e^{1/2} = 7200(1+2499e^{1/2}) = 5000 = 7 (1+2499e^{1/2}) = 5000 = 7 (1+2499e^{1/2}) = 7200(1+2499e^{1/2}) = 7200(1+249e^{1/2}) = 720(1+249e^{1/2}) = 7200(1+249e^{1/2}) = 7$ 

=> 
$$200 = H_2499 e^{K(1)} = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 200(110 + 2499) = 2$$

$$\begin{array}{c} 3/4/(5000) = 1 \\ + 3/499 e^{-4/65t} \\ = 1 \\ -4/65t \\ = 1 \\$$

- 11. [5] (LogsInPracticeSheet #9&5) Choose *ONE* of the following. Clearly identify which of the two you are answering and what work you want to be considered for credit. No, doing both questions will not earn you extra credit.
  - (a) Decibels: The loudness of a sound is measured in decibels and is related to the intensity I by

$$10\log\left(\frac{I}{S}\right)$$

where  $S = 10^{-12} \text{ W/m}^2$ .

Normal conversation has a sound level of about 65 decibels. How many more times intense than normal conversation is the sound an iPod operating at the French maximum of 100 decibels?

(b) Newton's Law of Cooling: If D is the initial temperature difference between an object and its surroundings, and if its surroundings have a temperature T, then the temperature of the object A and time t is modeled by:

$$A = T + De^{-kt}$$

where k is a positive constant that depends on the type of object.

Initially coffee has a temperature of 200°F in a room that is 70°. After ten minutes the temperature is 150°. When will the coffee get down to 100°?

(a) ? I conv = Imax => ? = Imox (As) (b) A = 70+ (200-70) e<sup>2</sup>

intensity intensity of sold to find t so 100=70+130e (B)

conversion max level (Bridgerd inormal (10,150) => 150=70+130e (B)

(10,150) => 150=70+130e

=> 6.5 = log (Imox)

=> 6.5 = log (Imox)

=> 6.5 = log (Imox)

=> 10 = 10 log (Imox)

=> 10 log

. -•