NAME:

1. [2] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function, and x, y, and z be real numbers.

T $\quad \mathrm{F} \quad 5+4\left(2^{3}-3^{2}\right)=-9$
T F $\quad x \cdot x=2 x$

T F All functions pass the horizontal line test.
T $\quad \mathrm{F} \quad \sqrt{x^{2}}=x$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
2. [4] Solve for r and simplify given:

$$
\frac{1}{\frac{1}{r}+\frac{1}{s}}=t
$$

3. Let the following be the graph of g.

(a) [2] Is g a function? Why or why not?
(b) [1] Find $g(-1)$.
(c) [2] Find $g(-2)+g(4)$.
(d) [3] What is the domain of g ?
4. [4] Find a number t so that the line containing the points $(1, t)$ and $\left(3, \frac{2}{3}\right)$ has slope $\frac{3}{5}$.
5. Let f be the function defined by

$$
f(x)= \begin{cases}\frac{1}{x}-2 & x \leq 1 \\ -x+3 & 1<x\end{cases}
$$

(a) [3] Graph f. (Explaining graph transformations is worth partial credit.)
(b) [2] Find all possible input(s) so that $f(x)=-1$.
6. Let $g(x)=x^{2}+7 x-12$.
(a) [3] Find the x-intercepts.
(b) [3] Put g into vertex form.
7. Let $\alpha(x)=\sqrt{3 x-7}$ and $\beta(x)=\frac{x-1}{x}$.
(a) [4] What is the domain of α ?

What is the domain of β ?
(b) [4] What is the rule of $\beta \circ \alpha$?

What is the domain of $\beta \circ \alpha$? Do not simplify.
(c) [3] Given that β has an inverse, find β^{-1}.
(d) [3] What is the range of β ? Justify yourself.
8. [3] Circle all graphs that could be of a $4^{\text {th }}$ degree polynomial.

9. [4] Simplify the following as much as possible (remember to show your work):

$$
\left(4 a^{5} b^{4} c^{3}\right)^{-2}\left(2 a^{5} b^{2} c^{2}\right)^{3}
$$

