NAME:

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function, and x, y, and z be real numbers with $z \neq 0$.
$\mathrm{T} \quad \mathrm{F} \quad \frac{\frac{1}{2}}{a}+\frac{1}{2 a}=a$
T $\quad \mathrm{F} \quad(x+2)^{2}=x^{2}+4$
T $\quad \mathrm{F} \quad f(x-1)=f(x)-1$
T $\quad \mathrm{F} \quad(2+3 i)(1-i)=2 * 1+3 *(-1) i=2-3 i$
T F A fourth degree polynomial always has four complex roots.
$\mathrm{T} \quad \mathrm{F}$ If f has an inverse and $f(1)=-2$ then $f^{-1}(-2)=1$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [4] (Practice Exam \#3) Find any real or imaginary x such that $\frac{2 x}{2 x-2}-\frac{x+1}{2 x-2}=\frac{1}{2 x}$.
3. Let f be the function comprised of three line segments whose graph is below:
(a) [4] (Quiz1 \#2)

Estimate the following if possible:
i. $f(85)$
ii. $6 f(70)+3$
iii. $(f \circ f)(90)$

(b) [2] (§1.5\#18) Draw the graph of g if $g(x)=f(x)+\frac{1}{2}$.
(c) [1] (Quiz1 \#2) Identify the range of f.
(d) [2] (WebHW2 \#14) Find the average rate of change of f from $x=20$ to $x=80$
(e) [4] (PracticeExam\#4) Find the piece-wise defined rule of f in the indicated form.

$$
f(x)= \begin{cases} & \text { if } 0 \leq x<57 \\ & \text { if } 57 \leq x<90 \\ \text { if } 90 \leq x \leq 100\end{cases}
$$

4. Let h be piece-wise defined by:
$h(x)= \begin{cases}-2 x+3 & -3<x \leq 1 \\ (x-2)^{2} & 2<x \leq 4\end{cases}$
(a) [3] (WebHW1 \#19)

Graph h.
(b) [2] (WebHW2 \#11)

Is h a function?
Why or why not?
$\left.\begin{array}{|r|r|r|r|r|l|l|l|l|l|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
(c) $[2](\S 1.1 \# 48)$ Identify the y-intercept.
(d) [1] (Quiz1 \#2) Find all possible input(s) so that $h(x)=1$.
5. Let $\alpha(x)=\frac{x+1}{x+2}$ and $\beta(x)=2-\sqrt{x+1}$. Both α and β have inverses that exist.
(a) $] 2]$ Find the domain of β.
(b) $[2](\S 1.6 \# 38)(\alpha \circ \beta)(x)$.
(c) [4] $(\S 1.7 \# 55)$ Find $\left(\alpha^{-1}\right)(x)$
6. [3] (WebHW3 \#8) Let f be the function whose graph is shown to the right. Graph g where

$$
g(x)=-\frac{1}{2} f(x)
$$

7. [8] (WordProblem \#5) A gardener wants to use 130 feet of fencing to enclose a rectangular garden and divide it into two plots, as shown in the figure to the right.

(a) [5] Find a function of x that represents the area of the garden.
(b) [3] Algebraically determine the largest possible area for such a garden.

