Exam 1

TMath 120

NAME:

- 1. TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F. Let f be a function, and x, y, and z be real numbers with $z \neq 0$.
 - T F $\frac{1}{2}a + \frac{1}{2a} = a$ T F $(x+2)^2 = x^2 + 4$ T F f(x-1) = f(x) - 1T F (2+3i)(1-i) = 2*1 + 3*(-1)i = 2 - 3i
 - T F A fourth degree polynomial always has four complex roots.
 - T F If f has an inverse and f(1) = -2 then $f^{-1}(-2) = 1$

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

2. [4] (Practice Exam #3) Find any real or imaginary x such that $\frac{2x}{2x-2} - \frac{x+1}{2x-2} = \frac{1}{2x}$.

3. Let f be the function comprised of three line segments whose graph is below:

- (b) [2] (§1.5 #18) Draw the graph of g if $g(x) = f(x) + \frac{1}{2}$.
- (c) [1] (Quiz1 #2) Identify the range of f.
- (d) [2] (WebHW2 #14) Find the average rate of change of f from x = 20 to x = 80

(e) [4] (PracticeExam#4) Find the piece-wise defined rule of f in the indicated form.

$$f(x) = \begin{cases} & \text{if } 0 \le x < 57 \\ & \text{if } 57 \le x < 90 \\ & \text{if } 90 \le x \le 100 \end{cases}$$

4. Let <i>h</i> be piece-wise defined by:					y_{4}^{5}					
$h(x) = \begin{cases} -2x + 3 & -3 < x \le 1 \end{cases}$					3					
$(x-2)^2 2 < x \le 4$					2					
(a) [3] (WebHW1 #19)					1					
Graph h .	-4	-3	-2	-1	0	1	2	3	4	75
					-1					л
(b) [2] (WebHW2 #11)					-2					
Is h a function?					-3					
Why or why not?					-4					

- (c) [2] ($\S1.1 \# 48$) Identify the *y*-intercept.
- (d) [1] (Quiz1 #2) Find all possible input(s) so that h(x) = 1.
- 5. Let $\alpha(x) = \frac{x+1}{x+2}$ and $\beta(x) = 2 \sqrt{x+1}$. Both α and β have inverses that exist.
 - (a)]2] Find the domain of β .
 - (b) [2] (§1.6 #38) $(\alpha \circ \beta)(x)$.
 - (c) [4] (§1.7 #55) Find $(\alpha^{-1})(x)$

6. [3] (WebHW3 #8) Let f be the function whose graph is shown to the right. Graph g where $g(x) = -\frac{1}{2}f(x)$.

 [8] (WordProblem #5) A gardener wants to use 130 feet of fencing to enclose a rectangular garden and divide it into two plots, as shown in the figure to the right.

- (a) [5] Find a function of x that represents the area of the garden.
- (b) [3] Algebraically determine the largest possible area for such a garden.