Quiz 4

Show *all* your work algebraically for each. No credit is given without supporting work. There are *two* sides to this quiz.

- 1. Let $f(x) = x^{-\frac{2}{5}}$. The graph of f is given below.
 - (a) [2] (§3.1 #27)Find a formula for the inverse function f^{-1} , if it exists.

- (b) [2] (§3.1 #59) Carefully sketch the graph of f(x + 1).
- 2. [2] (Web7 #11) Rewrite the expression as a single logarithm:

$$\ln 8 + 2\ln x + 2\ln(x^2 + 3)$$

3. Let $g(x) = \log_2 x$.

				v ^{5↑}					
				^y 4					
				3					
				2					
				1					
-4	-3	-2	-1	0	1	2	3	4	1
				-1					1
				-2					
				-3					
				-4					

(a) [1] (pg 239) Carefully draw the graph of g on the set of axes below.

- (b) $[1](\S{3.2 \# 63})$ Find g(13) exactly. Show work.
- (c) [2] (§3.2 #47) If g has an inverse, find it. If g does not, explain why not.