NAME: This is a sample midterm to be used for practice. This is *not* a template for the midterm that will be given in class. Many of the questions on the Midterm will look quite different than those appearing here.

1. [4] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function, and x, y, and z be real numbers with $z \neq 0$.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).

2. [3] Given $3(7+x)^{-2}-4=2$, solve for x.

$$\frac{3}{(7+x)^{3}} - 4 = 2$$

$$\frac{3}{(7+x)^{3}} = 6$$

$$\frac{3}{(7+x)^{3}} = 6$$

$$\frac{3}{3} = 6(7+x)^{2}$$

$$\frac{1}{2} = (7+x)^{2}$$

3. [4] Let the following describe the function α :

input:	0	*	Δ	$\star + \Delta$
output:	4	-2	3	-4

Find the following if possible:

$$\alpha(\star) + \alpha(\Delta) \qquad \alpha(\star + \Delta)$$

$$-2 + 3 = 1$$

$$\alpha(\bigcirc) \times \alpha(\star + \Delta)$$
 $\alpha(\Delta + \Delta)$ $\alpha(\Delta + \Delta)$ and defined

- 4. Consider $f(x) = \frac{x-1}{x}$ and g(x) = 3x 4.
 - [2] What is $f(z + \sqrt{2})$? Do not expand this.

• [3] Find the rule for $f \circ g$ and simplify as much as possible.

$$(f \circ g(x) = f(g(x)) = f(3x-4) = \frac{3x-4-1}{3x-4}$$

• [2] The function f is one-to-one, find it's inverse.

$$x = \frac{y-1}{y}$$
 $xy = y-1$
 $xy = y-1$

5. [4] Find the domain of f where $f(x) = \frac{2-\sqrt{5-2x}}{x+10}$

den con't be

X+10+0 x + -10

Egicle rust be given running # 5-2x 20

(-00,-10) U(-10, 5]

6. [4] Consider the points P=(3,4) and Q=(-1,-2). Find the equation to a line that goes through the point (1,1) and has a perpendicular slope to the line connecting Pand Q.

3 Q

Slope of PQ 13 6/1 = 36 4-226 27 slope of 1 to PG 13 -2/3 must pass two (1,1) so 1= 3/3(1)+6

1+3/3 = 6 93 = 6 => y= -3/3 x + 5/3

• [1] What is the y intercept of the line you found? x 20

• [1] Find the zeros of the line you found above.

when y=0

0 = 3/3 x+5/3

-B. -9x = - 3x - 3

7. [4] Given that $f(x) = x^2 - 5x - 6$. Write f in vertex form.

exect d(x-h)2+K form.

$$(x^{2}-5x-6)=y$$
 $+(-3)^{2}-6=y+(-3)^{2}$
 $[x^{2}-5x+(-3)^{2}]-6=y+(-3)^{2}$
 $[x-5]^{2}-6=y+254$

$$(x-3)^{\theta}-6-\frac{3}{4}=y$$
 $(x-3)-\frac{49}{4}=y$

8. Let f be the function defined by

 $f(x) = \begin{cases} \frac{1}{x} & x \le 1\\ (x-2)^2 & 1 < x \end{cases}$ peaks a Shifted synt 2nd

- (a) [3] ($\S1.3$) Graph f. (Explaining graph transformations is worth partial credit.)
- (b) [2] ($\S1.2 \#43$) Find all possible input(s) so that f(x) = 1.

or who we de:

1= $\frac{1}{x}$ or $\frac{1}{x^2}$ $\frac{1}{x^2}$

9. [4] Simplify the following as much as possible:

 $(\chi^{a})^{3} = \chi^{2} \chi^{3} \chi^{3}$

10. [3] Find a cubic polynomial whose graph passes through the points (-2,0) and (1,0)and has a root at 6. Note: there are many correct answers possible here.

entrols:
$$-3,1+6$$
 so $(x-2)(x-1)(x-6)$ works $(x-3)(x-1)(x-6)$ or $-3(x+3)(x-1)(x-6)$ ex

11. (Lecture 4/15) Let $m(x) = x^3 + x^2 - \frac{39}{4}x + 9$ and n(x) = x + 4. Use long division to find G(x) and R(x) so that $\frac{m(x)}{n(x)} = G(x) + \frac{R(x)}{n(x)}$

12. The height y (in feet) of a ball thrown by a child on the planet Gethen is

$$y = -x^2 + 15x + 3$$

where x is the horizontal distance in feet from the point at which the ball is thrown. Answer the following questions.

(a) [2] How high is the ball when it leaves the child's hand?

ie when x=0 new high is the bod? -02+15:0+3 = 3ft

(b) [2] How far from the child does the ball hit the ground?

if when does the height egual
$$0$$
?
$$0 = -x^2 + 15x + 3$$

$$-1 \cdot 0 = -x^2 + 15x + 3 \cdot -1$$

$$0 = x^{2} - 15x + 3$$
 (-18/2)²

$$\frac{15^2}{4} = \left[\chi^2 - 15 \chi + (-15)^2 \right] - 3$$

$$\frac{15^{3}}{4} + 3 = (x - \frac{15}{2})^{3}$$

$$\frac{1}{2}\sqrt{15^2+12} = x - 18$$

$$\chi = \frac{15^{2} \pm \sqrt{15^{2} + 12}}{4}$$

$$X = \frac{-15 \pm \sqrt{15^3 - 4(-1)(3)}}{2(-1)}$$

$$= -15 + \sqrt{15^{2} + 12^{3}}$$