NAME:
Show all your work. You are welcome to use a calculator but no notes, books, internet resources (Desmos is the exception!) or peers can be used. Reasonable supporting work must be shown to earn credit.

2. Provide a graph AND an algebraic rale/expression that which is described:
(a) [3] A exponential function whose range (outputs) is $(-2, \infty)$.

$$
\begin{aligned}
& y=2^{x}-2 \text { works } \\
& \text { erporentian }+.5 \text { matert.5 } \\
& \text { shinitis start. }
\end{aligned}
$$

(b) [3] A circle with radius 2 and centered at (0,2)

rule: looks like an oral be the scales on y axis are dit. then thole on x-axis

$$
(y-2)^{2}+(x-0)^{2}=2^{2}
$$

mater 1.5
3. Let f be a logarithm function (whose base is unknown!!!) that has been horizontally shifted \& graphed below.
(a) Estimate the following if possible:

i. [1] $f(0)$

ii. [2] the domain of f

iii. [1] all a so that

$$
\begin{aligned}
& f(a)=1 \text {. } \\
& \text { inputs otpt } \\
& a=3+1
\end{aligned}
$$

iv. [1] the x-intercepts)

Does

$$
x=2
$$

\square
(b) [2] Does f have an inverse? Why or why not?

(c) [2] We know from above that the graph of f is shifted horizontally. Describe precisely how much and in what direction $f(x)$ can be obtained from the graph of a basic logarithmic function (whose base is unknown!!!).

4. The temperature T (in C°) of coffee at time t minutes after its removal from the microwave is given by the equation $T=25+73 e^{-0.28 t}$.
(a) [2] Find the temperature when after a half hour has passed.
half an her $=25 \mathrm{~min}=\mathrm{t}^{2}$ So $25+73 e^{-, 28(30)}$ (b) [3] When will the temperature reach $30^{\circ} \mathrm{C}$? plogirt.5
(b) [3] When will the temperature reach $30^{\circ} \mathrm{C}$? $-0.28 t$

$$
\begin{aligned}
& \text { find } t \text { when } 3=25+73 e^{-0.28 t} \quad \rightarrow 5 / 73=e^{-.28 t} \\
& \begin{aligned}
25 & -25 \\
\frac{S}{73} & =\frac{7 B e^{-.28 t}}{75}
\end{aligned}\left\{\begin{array}{l}
t / 73=e \\
\ln (5 / 73)=-20 t \\
t
\end{array}=-\frac{1}{23} \ln (5 / 73)\right.
\end{aligned}
$$

5. Let x and y be defined so that $\ln (x)=2$ and $\ln (y)=5$. Compute the following:
(a) $[1]$

(c) $[2]$

$$
\begin{aligned}
\ln (x y) & =\backslash \cap(x) \downharpoonright \ln (y) \\
& =2+5 \\
& =7
\end{aligned}
$$

(d) $[2]$

6. Entropy S is a function of the number of possible states W, that are accessible to a system with a given amount of energy. We can explicitly compute entropy by

$$
S=k \ln (W)
$$

where k is Boltzmann's constant which is approximately $1.38065 \cdot 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$.
(a) [3] If a gas has entropy 2 , about how many possible states does the gas have?

(b) [4] If liquid A has $1,000,000,000,000$ (so $1 \cdot 10^{12}$) times more possible states than liquid B , which liquid has a higher entropy and what is the difference?
let ω_{A} he ${ }^{*}$ of states of rigid A

entropy for 4

$$
\begin{aligned}
& =k \ln \left(1 \cdot 10^{12} \cdot \omega_{B}\right) \\
& =K\left[\ln \left(10^{12}\right)+\ln \left(\omega_{B}\right]\right.
\end{aligned}
$$

$$
=k \ln \left(10^{12}\right)+k \ln \omega_{B}
$$

$$
=K \ln \left(10^{12}\right)+\operatorname{entm} y \text { ox } B
$$

