Quiz 5

1. [1] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let x, y, and z be a real numbers.

(T) F
$$(\sin x)^2 + (\cos x)^2 = 1$$

$$T(\widehat{F})\sin(u+v) = \sin(x) + \sin(y)$$

Show all your work algebraically for each and simplify. No credit is given without supporting work. There are two sides to this quiz. nule 35 1 372° 715 212°

2. [1] Find an angle that is coterminal with $\frac{31\pi}{15}$.

 $\frac{31_{15}}{15} - 2\pi = \frac{31_{17}}{15} - \frac{30_{17}}{15} = \frac{17}{15}$

3. [2] (WebHW12 #1) Consider the angle pictured here. The angle a is an integer when measured in radians. Give the radian measure of the angle.

4. [3] (Cricles & Angles Wks) Find the point(s) on the unit circle whose first coordinate is $\frac{-2}{3}$.

5. [3] (§5.3 #24) If $\cos \theta = \frac{-2}{3}$ and θ is between π and 2π , find $\cos \theta$

$$\frac{(-2/3)^2 + \sin^2 \Theta = 1}{(-2/3)^2 + \sin^2 \Theta = 1}$$

$$\frac{(-2/3)^2 + \sin^2 \Theta = 1}{\sin^2 \Theta = 1 - 4/9}$$

$$\frac{\sin^2 \Theta = \sqrt{5}}{\sin \Theta = \sqrt{5}}$$

$$\frac{\sin \Theta = \sqrt{5}}{3}$$

$$\frac{\sin \Theta = \sqrt{5}}{3}$$