NAME:

Ken

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F. Let f be a function, and x, y, and z be non-zero real numbers.

$$T \ \widehat{\mathbb{F}} \ \frac{2}{x} + \frac{1}{x^2} = \frac{5}{x^2}$$

T
$$\stackrel{\frown}{\mathbb{F}} \frac{2}{x} + \frac{1}{x^2} = \frac{5}{x^2}$$
 $\frac{2}{x} + \frac{1}{x^3} = \frac{2x+1}{x^3}$

$$T(\widehat{F}) x^{-1} + y^{-1} = \frac{1}{x+y}$$

$$T(\widehat{F}) x^{-1} + y^{-1} = \frac{1}{x+y}$$
 $\chi^{-1} + \chi^{-1} = \frac{1}{\chi} + \frac{1}{\chi}$

$$(\widehat{T})$$
 F $(x+y)^2 = x^2 + 2xy + y^2$

- The line $y = \frac{2}{3}x \pi$ is perpendicular to the line 2y 5 = -3x + 2.

 (5) $y = \frac{3}{3}x + \pi$ The line $y = \frac{2}{3}x \pi$ is perpendicular to the line 2y 5 = -3x + 2.

 (7) $y = \frac{3}{3}x + \pi$ (8) $y = \frac{3}{3}x + \pi$ (9) $y = \frac{3}{3}x + \pi$ (18) $y = \frac{3}{3}x + \pi$ (19) $y = \frac{3}{3}x + \pi$ (19) $y = \frac{3}{3}x + \pi$ (19) $y = \frac{3}{3}x + \pi$ (20) $y = \frac{3}{3}x + \pi$ (21)
 - T F The graph of $-x^{1} + 6x^{4} 54x 2.17$ is an even function.
 - T (F) All functions are either even or odd.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

2. [4] Solve for r, writing it as a reduced fraction:

$$\frac{1}{\frac{1}{r} + \frac{1}{s}} = t$$

1

$$\frac{s-t}{st} = \frac{1}{s}$$

some Sorron 1 side (t)

3. Let the following be the graph be a piece-wise defined graph of g.

- (a) [2] ($\S1.2$) Is g a function? Why or why not?
 - passes he rested me lest (4)
- (b) [1] ($\S1.2 \#21$) Estimate the value of g(-3+2)

- (c) [2] (§1.2) Estimate the value of g(-3) + g(2).
- (d) [2] (§1.4) Estimate the value of $g \circ g(2)$. g(g(x)) = g(1) = 0
- (e) [3] ($\S 1.2 \# 19$) What is the domain of g?
 - (-00,0) U(0,4) U(4,00)
- Markon (M)

break @ O D break at of (1)

4. [3] ($\S 2.1 \# 13$) Find the number c so that (c, 13) is on the line containing (-4, -17)and (6, 30).

2

Slope
$$\frac{30+17}{6+74} = \frac{47}{10} = 4.7$$

- 5. Let f be the function defined by
 - $f(x) = \begin{cases} \frac{1}{x} & x \le 1\\ (x-2)^2 & 1 < x \end{cases}$ Shift be any Junts.

- (a) [3] (§1.3) Graph f. (Explaining graph transformations is worth partial credit.)
- (b) [2] ($\S1.2 \#43$) Find all possible input(s) so that f(x) = 1.

6. (Practice Exam) Let
$$g(x) = x^2 + 5x - 6$$
.

(a) [2] Find the roots of g.

$$O = (x+6)(x-1)$$

=> $x = -6$ or $x = 1$

(b) [3] Put g into vertex form.

(b) [3] Put g into vertex form.

$$(5)^{2} + y = x^{2} + 5x - 6$$

$$(5)^{2} + y = x^{2} + 5x + (5)^{2} - 6$$

$$= (x + 5x)^{2} - 4 - 4$$

$$y = (x + 9) - 6 - \frac{2}{4}$$

$$= (x + 9)^{2} - \frac{24}{4} - \frac{25}{4}$$

$$= (x + 9)^{2} - \frac{4}{4}$$

$$= (x + 9)^{2} - \frac{4}{4}$$

7. Let
$$\alpha(x) = \frac{x-1}{-2x+7}$$
.

(a) [1] What is the domain of α?

(b) [2] Given that α has an inverse, find α^{-1} .

$$x = \frac{y-1}{-2y+7}$$

$$\frac{7}{7x+1} = \frac{y+2xy}{7x+1}$$

$$\frac{7}{7x+1} = \frac{y(1+2x)}{1+2x}$$

$$y = \frac{7}{1+2x}$$

(c) [2] What is the range of α ? Justify yourself.

8. (Lecture 4/15) Let $m(x) = x^3 + x^2 - \frac{39}{4}x + 9$ and n(x) = x + 4

(b) [4] Use long division to find G(x) and R(x) so that $\frac{m(x)}{n(x)} = G(x) + \frac{R(x)}{n(x)}$

$$\begin{array}{c} x^{2}-3x+9/4 \\ x^{2}-3x+9/4 \\ \hline (x^{3}+x^{2}-\frac{37}{4}x+9) \\ \hline (x^{3}+4x^{2}) \\ \hline (x^{3}+x^{2}-\frac{39}{4}x+9) \\ \hline (x^$$

$$\frac{-39}{4} + \frac{49}{4} = \frac{9}{4}$$

$$-3x^{2}-\frac{34}{4}x+9$$

$$\frac{\chi^{3} + \chi^{2} - \frac{39}{4} \chi + 9}{\chi + 4} = \chi^{2} - 3\chi + 9\chi$$

(p) 50 gans who 10% potassium ferrate. want 50.4 gams of potassium scrake. let x be the # of gams of potassium krakywad let y be the # of goms of mixture you keep

Total mixture: X+y=50 total potassion ferale: x+.4.y=50.4

=> x = 50-x

x + .1(50 - x) = 20

t) Started x + 5 - 1x = 20

9x+5=20

,9x =15

X = 15/4 = 15/9

t) defined remables) celchun bebusservanaldes) concertation calc.

> The nun amount of golassium ferrike neigh have to buy is

2 gens = 16.6g ≈ 17 gens

\$ 007,1 R few bloom 4 00

TVS a cost of 2000 so we save \$500 with this mixture problems