TMATH 120 Algebra Review Sheet

Knowledge of the following topics is a prerequisite for TMATH 120. During the class I will assume proficiency at these skills. The "You Try" problems suggested are to be used only as a guideline-if you have trouble with the ones listed, attempt more problems until you feel confident.

Basic Simplification

Apply order of operations to numerical and algebraic expressions; recall the rules for exponents.
Ex 1. Simplify: $-3^{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{1}{6}\right)^{-1}+(-2)^{3}$.
Solution:

$$
-3^{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{1}{6}\right)^{-1}+(-2)^{3}=-9+\frac{9}{4}+\frac{6}{1}+-8=-17+\frac{9}{4}+\frac{6}{1}=\frac{-68}{4}+\frac{9}{4}+\frac{24}{4}=\frac{-35}{4}
$$

(Another answer is $-8.75 .-8 \frac{3}{4}$ is also technically correct, but we avoid mixed fractions because of potential confusion: Taken out of context, $-8 \frac{3}{4}$ could mean either $-\left(8+\frac{3}{4}\right)$ or $(-8) \cdot \frac{3}{4}$.

You Try: §1.2\#9, 11, 23

Algebraic Manipulation

Add, subtract, multiply, and divide algebraic expressions; combine algebraic terms that are alike; apply the distributive property to algebraic expressions (the term "FOIL" only refers to distribution between two binomials; ask me to show you why FOIL works if you don't remember).
Ex 2 Simplify by combining like terms: $\left(9 x^{2}+4 x y-7 y^{2}\right)-\left(5 x y-6 x^{2}-1\right)$.
Solution:

$$
\left(9 x^{2}+4 x y-7 y^{2}\right)-\left(5 x y-6 x^{2}-1\right)=9 x^{2}+4 x y-7 y^{2}-5 x y+6 x^{2}+1=15 x^{2}-x y-7 y^{2}+1
$$

Ex 3 Expand and simplify completely: $3(4 v-2 a)^{2}$.

Solution:

$$
\begin{aligned}
3(4 v-2 a)^{2}=3(4 v-2 a) \cdot(4 v-2 a)=3[(4 v) & (4 v)-(4 v)(2 a)-(2 a)(4 v)+(2 a)(2 a)] \\
& =3\left[16 v^{2}-16 a v+4 a^{2}\right]=48 v^{2}-48 a v+12 a^{2}
\end{aligned}
$$

You Try: §1.3\#7, 13, 15, 19, 21, 25, 39

Factoring

Factor binomials of the form $a^{2}-b^{2}$; factor trinomials of the form $a x^{2}+b x+c$ using factoring by grouping or trial and error; recognize and factor out the greatest common factor of an expression; check answers by using distribution.
Ex 5 Factor completely: $16 w^{4}-81$.

Solution:

$$
16 w^{4}-81=\left(4 w^{2}+9\right)\left(4 w^{2}-9\right)=\left(4 w^{2}+9\right)(2 w+3)(2 w-3)
$$

(Note that $4 x^{2}+9$ does not factor any further since the sum of squares is prime.)
Ex 6 Factor completely: $12 t^{2}+14 t-6$.
Solution:

$$
12 t^{2}+14 t-6=2\left(6 t^{2}+7 t-3\right)=2(2 t+3)(3 t-1)
$$

You Try: §1.3\#43, 45, 47, 49, 71, 73,

Equations of Lines

Find the slope of the line defined by two points; write the equation of a line in slope-intercept form.

Ex 4. Find the slope of the line passing through the points $(-2,7)$ and $(4,-7)$.
Solution: slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7-7}{4-(-2)}=\frac{-14}{6}=\frac{-7}{3}$
You Try: $\S 1.10$ \#3,9,11,15,17,19

Rational Expressions

Simplify fractions by finding factors in common; add/subtract fractions by first rewriting with the least common denominator; multiply/divide rational expressions; simplify complex fractions.

Ex 7 Reduce to lowest terms: $\frac{10 x-20}{2 x^{2}-8}$.

$$
\begin{aligned}
& \text { Solution: } \\
& \frac{10 x-20}{2 x^{2}-8}=\frac{10(x-2)}{2\left(x^{2}-4\right)}=\frac{10(x-2)}{2(x+2)(x-2)}=\frac{2(x-2)}{2(x-2)} \cdot \frac{5}{x+2}=\frac{5}{x+2}
\end{aligned}
$$

Ex 8 Perform the indicated operations and simplify: $\frac{2}{3 x+2}-\frac{1}{3 x+1}$.
Solution:

$$
\begin{aligned}
& \frac{2}{3 x+2}-\frac{1}{3 x+1}=\frac{3 x+1}{3 x+1} \cdot \frac{2}{3 x+2}-\frac{1}{3 x+1} \cdot \frac{3 x+2}{3 x+2} \\
&=\frac{3 x+2}{(3 x+1)(3 x+2)}-\frac{3 x+2}{(3 x+1)(3 x+2)}=\frac{3 x}{(3 x+1)(3 x+2)}
\end{aligned}
$$

(There is no further simplification here, $3 x$ has no factors in common with $3 x+1$ or $3 x+2$.)
Ex 9 Perform the indicated operations and simplify: $\frac{2 z+6}{12 z} \div \frac{z^{2}-9}{9 z^{3}+18 z^{2}}$.
Solution:

$$
\begin{aligned}
\frac{2 z+6}{12 z} \div \frac{z^{2}-9}{9 z^{3}+18 z^{2}}=\frac{2 z+6}{12 z} \cdot \frac{9 z^{3}+18 z^{2}}{z^{2}-9}= & \frac{2(z+3)}{12 z} \frac{9 z^{2}(z+2)}{(z+3)(z-3)} \\
& =\frac{2 \cdot 3 \cdot z(z+3)}{2 \cdot 3 \cdot z(z+3)} \cdot \frac{3 z(z+2)}{2(z-3)}=\frac{3 z(z+2)}{2(z-3)}
\end{aligned}
$$

You Try: §1.4 \#7,9,13,17,19,29,31,35,41

Solving Equations

Solve linear equations; solve quadratic equations by employing factoring or the quadratic formula.

Ex 10 Solve for $m: 3(m+4)+2 m=4-3 m$.
Solution

$$
3(m+4)+2 m=4-3 m \Rightarrow 3 m+12+2 m=4-3 m \Rightarrow 8 m=-8 \Rightarrow m=-1
$$

Ex 11 Solve for $q: 2 q^{2}+7=9 q$.
Solution

$$
2 q^{2}+7=9 q \Rightarrow 2 q^{2}-9 q+7=0 \Rightarrow(2 q-7)(q-1)=0 \Rightarrow q=\frac{7}{2} \text { or } q=1
$$

You Try: $\S 1.5 \# 3,7,9,11,17,19,39,55$

