Quiz 2

Show all your work. No credit is given without reasonable supporting work. There are two sides to this quiz.

1. [3] (§2.7 \#1 \&14) Draw a function α that satisfies the following criteria:
(a) $\alpha(1)=-2$
(b) α is decreasing on the interval $[-3,2]$]
(c) the average rate of change between $x=1$ and $x=4$ is 2
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y_{5}^{5} & & & & & \\ \hline\end{array}\right)$
2. [2] (Line Wks \#6) Let the graph of the function β be a line with slope $\frac{-1}{3}$ and assume it passes through the point $(3,4)$. Find the rule of β.
3. Consider the following piece-wise defined graph of g.

				y^{4}					
				3		0			

(a) $[1](\S 2.7 \# 20 b)$ Evaluate $(g \circ g)(0)$.
(b) [4] ($\S 2.4 \# 11 \& \S 1.10 \# 14)$ The function g is comprised of two lines and a parabola. The parabola has been shifted both vertically and horizontally (but not stretched vertically in anyway). Use your knowledge of lines and graph transformations to find a formula for g in the indicated form:

$$
g(x)= \begin{cases} & \text { if }-3 \leq x<-2 \\ & \text { if }-2 \leq x<1 \\ & \text { if } 2 \leq x \leq 4\end{cases}
$$

