NAME: This is a sample exam to be used for practice. This is not a template for the exam that will be given in class. Many of the questions on the exam will look quite different than those appearing here.

1. [4] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F . Let f be a function, and x, y, and z be real numbers with $z \neq 0$.
$\mathrm{T} \quad \mathrm{F} \quad \frac{3 x+y}{3 z}=\frac{x+y}{z}$
T $\quad \mathrm{F} \quad(x+y)^{2}=x^{2}+y^{2}$
T $\quad \mathrm{F} \quad|x|=x$
T F $\quad \frac{3+5 i}{1-2 i}=-\frac{7}{5}+\frac{11}{5} i$
Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. [3] Given $3(7+x)^{-2}-4=2$, solve for x.
3. [4] Let f be the function whose graph is below:

Estimate the following if possible:

$$
f(-3)
$$

$$
\frac{f(-3)-1}{f(-1)}
$$

$$
(f \circ f)(-2)
$$

$$
f(-1) f(2)
$$

$$
f(0+.5)
$$

$$
\frac{f(0+.5)}{.5}
$$

The average rate of change of f

$$
\text { from } x=0 \text { to } x=.5
$$

4. [4] Find the domain of g where $g(x)=\frac{2-\sqrt{5-2 x}}{x+10}$.
5. [4] Consider the points $P=(3,4)$ and $Q=(-1,-2)$. Find the equation to a line that goes through the point $(1,1)$ and has a perpendicular slope to the line connecting P and Q.

- [1] What is the y intercept of the line you found?
- [1] Find the zeros of the line you found above.

6. Let h be the function defined by:
$h(x)= \begin{cases}3 & x \leq 1 \\ 2(x-2)^{2} & 1<x\end{cases}$
$\left.\begin{array}{|l|l|l|l|r|l|l|l|l|l|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
(a) [3] Graph h. (Explaining graph transformations is worth partial credit.)
(b) [] What are the coordinates of the vertex on the piece of the graph above that is a parabola?
(c) [2] Find all possible input(s) so that $h(x)=1$.
(d) What is the range h ?
7. [4] Given that $j(x)=-3 x^{2}+6 x-2$. Write j in vertex (standard) form.
8. [4] Simplify the following as much as possible:

$$
\frac{\left(2 x^{4} y^{\frac{1}{6}}\right)^{3}\left(6 x y^{3}\right)^{-3}}{8^{\frac{-2}{3}} x^{4} y^{4}}
$$

9. [3] Find a cubic polynomial whose graph passes through the points $(-2,0)$ and $(1,0)$ and has a root at 6 . Note: there are many correct answers possible here.
10. Let $m(x)=x^{3}+x^{2}-\frac{39}{4} x+9$ and $n(x)=x+4$. Use long division to find $D(x)$ and $R(x)$ so that $\frac{m(x)}{n(x)}=D(x)+\frac{R(x)}{n(x)}$
11. Let $p(x)=\frac{x-5}{7 x+5}+3$.
(a) Given that p is one-to-one (ie has an inverse), find p^{-1}.
(b) Write the expression $p(a+h)$ and simplify.
(c) Write the expression $\frac{p(a+h)-p(a)}{h}$ and simplify.
12. A rectangular box with a volume of $60 \mathrm{ft}^{3}$ has a square base. Find a function that models its surface area S in terms of the length x of one side of its base.
