NAME: This is a sample final to be used for practice. This is not a template for the Final that will be given in class. Many of the questions on the Final will look quite different than those appearing here.

Let $f \& g$, be functions with inverses f^{-1} and g^{-1} respectively.

T $\quad \mathrm{F} \quad(x+3)^{2}=x^{2}+9$
$\mathrm{T} \quad \mathrm{F} \quad(f \circ g)(x)=(g \circ f)(x)$
$\mathrm{T} \quad \mathrm{F} \quad\left(\frac{f}{g}\right)(x)=\left(\frac{g}{f}\right)(x)$
$\mathrm{T} \quad \mathrm{F} \quad \sqrt{\left(x^{2}\right)}=x$ for all real numbers x.
T F If 2 is a root of g, then $g(2)=0$.
T $\quad \mathrm{F} \quad \ln \frac{x}{y}=\ln x-\ln y$ for all positive numbers x and y.
T $\quad \mathrm{F} \quad \log (\log (10))=0$.
$\mathrm{T} \quad \mathrm{F} \quad f\left(f^{-1}(54)\right)=54$
T F
T F
Right answers will not get credit without supporting work. Note "undefined" and "no solution" are possible answers.

1. Find all x such that

$$
2\left(5-(8-x)^{2}\right)^{-\frac{1}{2}}-1=0
$$

2. Perform the opperation

$$
\frac{\frac{2}{x^{2}}-x}{x-2}+\frac{3 x-5}{(x+4)(x-4)} \quad \frac{1+3 i}{-6 i+2}
$$

3. Given $m(x)=\frac{2 x+3}{x-5}$, and $n(x)=\sqrt{4 x-8}$,
(a) The inverse to the function m exists. Find m^{-1}.
(b) If $p(x)=3 m(x+1)$, find the domain and rule of p.
(c) Find the domain and rule of $m \circ n$.
(d) Find the domain and rule of $\frac{n}{m}$.
4. Let the following be the graph of g comprised of a parabola and an exponential function that have been shifted (not stretched).
(a) What is the domain of g ?
(b) What is the range of g ?
(c) Use the graph above to estimate all x value(s)
 so that $g(x)=1$?
(d) Write down the piece-wise defined rule for g.
(e) Draw the graph of $-2 g(x-1)$
5. Define f by

$$
f(x)= \begin{cases}\frac{1}{x+2} & \text { if } x<0 \\ x^{2}+1 & \text { if } 0<x \leq 2 \\ \log _{2}(x-1) & \text { if } 2<x \leq 4\end{cases}
$$

| | | | | y_{1}^{5} |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |

(a) Graph f on the axes above.
(b) Find the following if possible:
$f(1)$
$\frac{4}{f(2)}+f(3)$
$f(0)$

$$
f\left(\frac{-1}{4}\right)
$$

Domain of f
6. Find all of the exact values x that satisfy the following:
$5^{5 x} 25^{x^{2}}=125$

$$
5^{4 x-1}=7^{x}
$$

7. Find all exact values for x that satisfy the following:

$$
\log (x-16)=2-\log (x-1) \quad \frac{15}{3+2 \cdot 5^{x}}=4
$$

8. Assume c, d, and z are all greater than zero and simplify:

$$
\frac{\sqrt{c^{2} d^{6}}}{\sqrt{4 c^{3} d^{-4}}}
$$

$$
2-\log _{5}(25 z)
$$

9. Given $f(3)=0$ find the other roots of $f(x)=x^{4}-3 x^{3}-25 x^{2}+75 x$
10. Now that finals are next week, James T. Kirk would like to know if it is still possible to earn a 2.0. He has looked at the gradebook on MyMathLab and has computed the averages listed below.

Find what grade he needs to get on the final to receive a 2.0 in the course. In case you don't remember, the weights specified in the syllabus and the graph of the function f that takes your class percentage x and returns your score on a 4 . scale are also provided.

	weight	James' a
Mini-Quizzes	5%	95%
WebAssign	10%	10%
WrittenHW	15%	0%
Quizzes	15%	70%
2 Exams	30%	100%
Final	25%	

11. A rancher with 180 meters of fencing intends to enclose a rectangular region along a river (which serves as a natural boundary requiring no fence).
(a) Find the area of the region as a function of the width.
(b) Find the maximum area that can be enclosed.
12. Suppose a radioactive isotope is such that one-fifth of the atoms in a sample decay after three years. Find the half-life of this isotope
13. Recall $\left[H^{+}\right]$is the concentration of hydrogen ions in solution X measured in moles per liter $($ denoted $M)$. Then pH level of solution $X=-\log \left[H^{+}\right]$. How many times more concentrated is $\left[H^{+}\right]$of acid rain with a pH value of 3 to ordinary rain with a pH value of 6 ?

