Transforming Functions take 2

1. Suppose f is a function and $a>0$. Define functions g and h by

$$
g(x)=f(x)+a \quad \text { and } \quad h(x)=f(x+b)-a .
$$

Complete the following sentence:
The graph of g is obtained by shifting the graph of $f \ldots$
2. The graph of a piece-wise defined function labeled g is below. To be explicit, all the pieces of the graph below make up the graph of g. Note that although the graph of g is disconnected, g passes the vertical line test so it is a function.
(a) Find the range of g.
(b) For what value(s) of x does $g(x)=-1$?
(c) Use your answer from Number 4 and draw the graph of $m(x)=g(x-1)+2$ on the set of axes.

(d) The graph of g is comprised of two line segments and a parabola that has been shifted. Write the rule of g in the form indicated below

$$
g(x)= \begin{cases} & \text { if }-4 \leq x \leq-1 \\ & \text { if }-1<x \leq 1 \\ & \text { if } 2 \leq x \leq 4\end{cases}
$$

3. Let g again be the piece-wise defined function graphed below.

(a) Identify the steps to transform the graph of g into the graph of $\alpha(x)=-g(x+1)-2$ and then graph α.
