Transforming Functions

Let $f(x)=x^{2}$ for the entirety of this worksheet.

1. (a) Find $f(2)$ and plot the point $(2, f(2))$ on the graph below.
(b) Fill out the following table and use the information to sketch a graph of the function $f(x)$.

x	$f(x)$
$\frac{-3}{2}$	
-1	
$\frac{-1}{2}$	
0	
2	
$\frac{3}{2}$	

This graph of a quadratic polynomial is called a parabola.
(c) What is the domain of f in interval notation? The range?
2. Define a new function g to be $g(x)=f(x)+1$. Since f was defined above, we know $f(x)=x^{2}$, so we can write the rule of g more explicitly as $g(x)=x^{2}+1$.
(a) Find $g(2)$ and plot the point $(2, g(2))$ on the graph below.
(b) Fill out the following table and use the information to sketch a graph of the function $g(x)$.

x	$f(x)$
$\frac{-3}{2}$	
-1	
$\frac{-1}{2}$	
0	
2	
$\frac{3}{2}$	

			1	-		
			y			
			4.			
			3			
			2			
			1			
3			10			$2 x^{3}$

(c) Finish the following sentence:

The graph of g looks like that of f from \# 1. but shifted...
3. Define a new function k to be $k(x)=f(x)+2$. Without plotting points like we did for Problems 1 and 2, can you say what the graph of k will look like? Either explain what it will look like or draw it on the above graph.
4. Suppose f is a function and $a>0$. Define functions g and h by

$$
g(x)=f(x)+a \quad \text { and } \quad h(x)=f(x)-a .
$$

Complete the following sentences:

- The graph of g is obtained by shifting the graph of $f \ldots$
- The graph of h is obtained by shifting the graph of $f \ldots$

Verify your answer to Number 4 by looking at the box on page 65 of the textbook.
5. The graph of a piece-wise defined function labeled g is below. To be explicit, all the pieces of the dotted graph below make up the graph of g. Note that although the graph of g is disconnected, g passes the vertical line test so it is a function.
(a) Find the domain of g.
(b) Find the range of g.
(c) For what value(s) of x does $g(x)=-1$?
(d) Use your answer from Number 4 and
 draw the graphs of
$m(x)=g(x)+2$ and
$n(x)=g(x)-1$ on the set of axes.

