Rational Functions

A rational function r is a function of the form $r(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials with $g(x) \neq 0$

1. Identify which if the following are rational functions:

$$f(x) = \frac{1}{x} - 1$$
 $g(x) = \sqrt[4]{x^2 + 4}$ $h(x) = \frac{x^2 - 4}{x - 2}$

2. Identify which of the above are functions and then determine the domain.

The line x = a is called a *vertical asymptote* of the graph of a function f if $f(x) \to \infty$ as $x \to a^+$ or as $x \to a^-$ or if $f(x) \to -\infty$ as $x \to a^+$ or as $x \to a^-$.

The line y = k is a *horizontal asymptote* of the graph of a function f if $f(x) \to k$ as $x \to \infty$ or if $f(x) \to k$ as $x \to -\infty$.

If $f(x) = \frac{N(x)}{D(x)}$ is a rational function where N(x) and D(x) do not have a common factor and c is a real zero of D(x), then the line x = c is a vertical asymptote.

- 3. A company manufactures widgets. Fixed daily costs are \$2000 and it costs \$1.5 to produce each widget.
 - (a) Write the average cost \overline{C} of producing x widets.
 - (b) Find and interpret $\overline{C}(100)$ and $\overline{C}(500)$.

4. Graph $\frac{2}{x-1} \qquad \qquad \frac{-3x-4}{x+2}$

