Vertex Form

Get into groups of two to three and work on the following.
Let $f(x)=x^{2}$ for the entirety of this worksheet.

1. Draw the graph of f.
2. What is the name of graphs that have this U-shape?
(You can verify your answer by looking at the Transforming Functions Worksheet or page 7 of Ratti.)

3. The minimum point on the graph of f is called the vertex. What are the coordinates of the vertex of f ?
4. Recall $\S 1.5$ (what was that about again?) and finish the following sentence: The graph of $g(x)=(x+1)^{2}+2$ looks like the graph of f, but shifted...
5. Draw the graph of g and write the coordinates of the vertex of g.
6. Finish the following sentence: The graph of $j(x)=(x-1.5)^{2}-0$ looks like the graph of f, but shifted...
7. Draw the graph of j and write the coordinates of the vertex of j.
8. Consolidate the work on the previous page and fill out the table:

function $f(x)$ $=x^{2}$ or $=(x-0)^{2}+0$	horizontal shifts	vertical shifts	vertex coordinates					
		none	$(0,0)$					
:---	:---	:---	:---					
$g(x)=(x+1)^{2}+2$								

9. Let $h \& k$ be positive numbers. Finish the following sentence: The graph of

$$
v(x)=(x-h)^{2}+k
$$

looks like the graph of f, but shifted....
10. The graph of v is hard to draw when we don't have numbers for h or k. However, we know the coordinates of the vertex of f and we can trace the movement of this point through the graph transformations your described above in 8 and then write the coordinates of the vertex of v. What are the coordinates of the vertex of v ?
11. Repeat the work you did for g in numbers $4 \& 5$ for each of the functions below and fill out the following table:

function $f(x)$ $=x^{2}$ or $=(x-0)^{2}+0$ none	vertical stretch	horizontal shifts	vertical shifts	vertex coordinates
$m(x)=2(x+0)^{2}+2$		none	none	$(0,0)$
$n(x)=3(x-1)^{2}-0$				
$p(x)=2(x-1)^{2}-1$				

12. Let h, k, and a be positive numbers and let $w(x)=a(x-h)^{2}+k$. Consider the above table or perhaps trace the vertex of f through the graph transformations of w. Either way, find the coordinates of the vertex of w.
