Note: This sample exam is to be used for practice. This is not a template for the exam that will be given in class. Many of the questions on the exam will look quite different than those here.

1. TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F . Let f be a function, and x, y, and z be real numbers with $z \neq 0$.
$\mathrm{T} \quad \mathrm{F} \quad \frac{3}{a}+\frac{4}{a^{2}}=\frac{7}{a+a^{2}}$
T F $\quad x^{2}+8 x+15$ has a root at -5 .
T $\quad \mathrm{F} \quad(x+2)^{2}=x^{2}+4$
T $\quad \mathrm{F} \quad x^{2}+3$ and $\sqrt{x-3}$ are inverses.
T F All functions have inverses.
Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. Given that 2 is a root, find all the real and complex zeros of $x^{4}+x^{3}-5 x^{2}-2 x$
3. Let f be the piece-wise defined function graphed below:
(a) Find the domain of f
(b) Find the range of f
(c) Does f have an inverse? Why or why not?

(d) Estimate the following if possible:
i. $f(1)$
ii. $(f \circ f)(2)$
(e) Estimate all x such that $f(x)=-2$.
(f) Identify the zeros of f.
(g) Assume f is comprised of a polynomial and a line. For the polynomial piece, assume when it is completely factored each real zero corresponds to a factor of the form $(x-c)^{m}$. Find the equation for f with least degree for the polynomial piece.
4. Let $h(x)= \begin{cases}\frac{4}{x+2} & -3<x \leq-1 \\ x^{2}-3 & -1<x \leq 4\end{cases}$
(a) Estimate the following if possible:
i. $h(0)$
ii. $(h)(-2)$

				y_{1}^{5}					

(b) Graph h.
5. Consider the function $r(x)=\frac{-2 x-1}{x+2}$.
(a) Find the domain of r.
(b) Given that r is one-to-one (i.e. r has an inverse, find f^{-1}.
6. Let $p(x)=2 x^{2}+10 x-5$
(a) Write $p(x)$ in vertex or standard form.
(b) Identify the graph transformations used to transform the graph of $y=x^{2}$ into p.
7. Consider the graph of g. Graph g^{-1}

8. Sketch the graph of $\frac{1}{2} x(x+3)^{2}(x+4)$.
9. A square piece of a tin 18 inches on each side is to be make into a box, without a top, but cutting a square from each corner and folding up the flaps to corm the sides.
(a) Find the volume v of the box as a function of the length of the squares removed from the corners.
(b) What size corners should be cut so that the volume of the box is 432 cubic inches?

