Logarithmic Functions

1. Assume you have \$50,500 and a savings account offer with and effective annual interest rate of 2%. How much money would you have in the bank if the money is compounded:

(a) annually?

(b) daily?

(c) continuoulsly?

- 2. Graph:
 - (a) $f(x) = 3^x$.
 - (b) $g(x) = \log_3(x)$
 - (c) $h(x) = 2\log_3(x) 1$

				ν ⁵ 1				
				^y 4				
				3				
				2				
				1			1	
-4	-3	-2	-1	0	1	2	3	4
				-1				
				-2				
				-3				
				-4				

3. Given that g(x) is an logarithmic function of the form $y = \log_b(x)$ that has been vertically shifted and is graphed below. Find the equation.

- 4. Find the value t in the following by writing logarithmic equations as exponential equations:
 - (a) $\log(t) = 5.5$
 - (b) $\log_7(\sqrt[3]{7}) = t$
 - (c) $\log_t(4) = 2$
 - (d) $2 = e^{-02t}$