Inverses

- 1. Given a tube partway filled with liquid will have a height dependent on the temperature. That is, we have height h as a function of Temperature T.
 - (a) What does h(32) = 1 mean in physical terms?
 - (b) Describe the inverse function h^{-1} by identifying the inputs, outputs, and what it measures.
- 2. Let m be the function completely defined by the table:

- (c) Use a different mark (or color) to graph m^{-1} on the same set of axes.
- (d) Notice the point (1,-3) is on the graph of m and (-3,1) is on the graph of m^{-1} . Similarly $(\frac{3}{2},2)$ is on the graph of m and $(2,\frac{3}{2})$ is on the graph of m^{-1} .
- (e) Find the domain of m and range of m^{-1} . Are there any similarities?

The observations you made in (e) is true in general, and more:

if f is the inverse of g then: Domain of f=Range of g Range of f=Domain of g

3. Let n be the function defined by the following graph:

(a) Will n have an inverse? Why?					4 7 y 3	• •	•		
(b) Use the observations from #1d to graph n^{-1} .	5	-4	-3 -	2 -	1 0 -1 -2		2 3	3 2	

4. Let p be the function defined by $p(x) = x^2 - 1$.

(a) Draw the graph of p.(b) Will p have an inverse? Why?					$y_4^{5^{\uparrow}}$ 3 2					
		2	-	-		-	-		-	
	-4	-3	-2	-1	0	1	2	3	4	x ⁵
					-1					
					-2					
					-3					
					-4					

- (c) Let the function q have the same rule as p (so $q(x) = x^2 1$), but with a *restricted* domain. The domain of q is set to all $x \ge 0$ (in interval notation: $[0, \infty)$). Draw the graph of q with distinct marks from the graph of p.
- (d) Will q have an inverse? Why
- (e) Sketch the graph of q^{-1} on the above set of axes. Verify your answer by looking at example 8 on page 101.

When we are given a function that is *not* one-to-one we can choose to restrict the domain to a subsection and in so doing, define a partial inverse.