Inverses

1. Given a tube partway filled with liquid will have a height dependent on the temperature. That is, we have height h as a function of Temperature T.
(a) What does $h(32)=1$ mean in physical terms?
(b) Describe the inverse function h^{-1} by identifying the inputs, outputs, and what it measures.
2. Let m be the function completely defined by the table:

\star	$m(\star)$	\star	$m^{-1}(\star)$
1	-3	-3	
$\frac{3}{2}$	2	2	
π	$\sqrt{2}$	$\sqrt{2}$	

(a) Complete the table above to define m^{-1}.
(b) Plot the graph of m on the set of axes provided.

(c) Use a different mark (or color) to graph m^{-1} on the same set of axes.
(d) Notice the point $(1,-3)$ is on the graph of m and $(-3,1)$ is on the graph of m^{-1}. Similarly $\left(\frac{3}{2}, 2\right)$ is on the graph of m and $\left(2, \frac{3}{2}\right)$ is on the graph of m^{-1}.
(e) Find the domain of m and range of m^{-1}. Are there any similarities?

The observations you made in (e) is true in general, and more:
if f is the inverse of g then: Domain of $f=$ Range of $g \quad$ Range of $f=$ Domain of g
3. Let n be the function defined by the following graph:
(a) Will n have an inverse? Why?
(b) Use the observations from $\# 1$ d to graph n^{-1}.

4. Let p be the function defined by $p(x)=x^{2}-1$.
(a) Draw the graph of p.
(b) Will p have an inverse? Why?

(c) Let the function q have the same rule as p (so $q(x)=x^{2}-1$), but with a restricted domain. The domain of q is set to all $x \geq 0$ (in interval notation: $[0, \infty)$). Draw the graph of q with distinct marks from the graph of p.
(d) Will q have an inverse? Why
(e) Sketch the graph of q^{-1} on the above set of axes. Verify your answer by looking at example 8 on page 101 .

When we are given a function that is not one-to-one we can choose to restrict the domain to a subsection and in so doing, define a partial inverse.

