Exponent Properties

There are 'five' properties of exponents that you need to know well to work with algebraic expressions and equations. The 'zeroth' property is:

Property 0) Let b be a real number and m a positive integer, then

$$
b^{m}=b \cdot b \cdot b \cdot \ldots \cdot b
$$

where b appears m times on the right.
For example, we can write out $(-2)^{4}$ with no exponents as $(-2) \cdot(-2) \cdot(-2) \cdot(-2)$ or $(4)^{3}$ as $4 \cdot 4 \cdot 4$. We will often rely on the order of operations and drop parenthesis and just write 4^{3} instead.

Warning: the order of operations is such that exponents only effect the object they 'hover' behind. For example, $-2^{4}=-2 \cdot 2 \cdot 2 \cdot 2$, since the exponent is only effecting the 2 and not the negative sign.

There are some special cases of the above definition (that not all mathematicians agree on). Mainly:

$$
0^{m}=0 \quad 1^{m}=1 \quad b^{0}=1 \quad 0^{0} \text { is undefined }
$$

1. Consider $x^{2} \cdot x^{5}$.
(a) Write out $x^{2} \cdot x^{5}$ with no exponents (like what was done in the above paragraph).
(b) Write $x^{2} \cdot x^{5}$ as x raised to a single power.
2. Consider $y^{3} \cdot y^{3}$.
(a) Write out $y^{3} \cdot y^{3}$ with no exponents.
(b) Write $y^{3} \cdot y^{3}$ as y raised to a single power.
3. Use your work above the finish the following first property:

Property 1) Let b be a real number, and let m and n be positive integers, then

$$
b^{m} \cdot b^{n}=
$$

1. Write out \square^{4} with no exponents (like you did on the first page).
2. Write an $\left(x^{3}\right)^{4}$ using only multiplication and instances of x^{3}. In other words, do the same problem as number one but instead of using a square, use the symbol x^{3}.
3. Now expand the above with Property 0 to write out $\left(x^{3}\right)^{4}$ with no exponents.
4. Repeat the steps above to write out $\left(y^{5}\right)^{2}$ with no exponents.
5. Use your work above to finish the following:

Property 2) Let b be a real number, and let m and n be positive integers, then

$$
\left(b^{m}\right)^{n}=
$$

1. Let x and y be real numbers and m be positive integers. Is there a relationship between $(x \cdot y)^{m}$ and $x^{m} \cdot y^{m} ?$ If so, state it and explain why it is true.

By answering the previous question you can now state:
Property 3) Let a and b be real numbers, and let m be a positive integer, then

$$
(a \cdot b)^{m}=
$$

You can verify these properties on page 14 of your text. I suggest you do not memorize them as most people mix them up. Rather, work through examples like 2 on page 1 and 4 on page 2 whenever you realize you need to work with exponents.

The remaining two properties are:
Property 4) Let b be a real number and let m and n be positive integers, then

$$
\frac{b^{m}}{b^{n}}=b^{m-n} .
$$

and

Property 5) Let a and b be a real numbers and let m be a positive integer, then

$$
\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}
$$

1. Recall that $x^{-2}=\frac{1}{x^{2}}$. Make sure Property 4 is consistent with this observation by simplifying

$$
\frac{x^{6}}{x^{8}}
$$

All the rules can be found in Appendix 1 on pages $788 \& 189$. Now, some practice...

1. Simplify $\left(-4 x^{2} y^{3}\right)\left(7 x^{3} y\right)$.
2. Simplify $\left(\frac{x^{5}}{2 y^{-3}}\right)^{-3}$. Hint: use lots of room and make sure your exponents don't fall!
3. Evaluate the expression and write the result in the form $a+b i:(-5+2 i)^{3}$
4. Solve for x given $3 x^{-2}-7=0$

Notice that you can verify your answers to 1-2 by looking at Example 7 on page 790. Number four comes up a great deal in calculus word problems.

