NAME:

1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true. Otherwise, circle F . Let f be a function with an inverse defined.

T \quad F $\quad \frac{\frac{1}{2}+\frac{1}{3}}{a}=\frac{5}{6 a}$
T F The graph of $\frac{1}{x-2}=y$ has a vertical asymptote at $x=2$.
T $\quad \mathrm{F} \quad(x+2)^{2}=x^{2}+4$
T F $\quad(x+1)$ is a factor of $x^{4}-3 x^{2}+2$.
T $\quad \mathrm{F} \quad\left(f \circ f^{-1}\right)(55)=55$
T F All functions have inverses.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit (this includes multiple choice questions).
2. Let $q(x)=-2 x^{2}+12 x-25$.
(a) [3] (PracticeExam \#6) Write q in vertex or standard form.
(b) [2] (WebHW8 \#4) Identify if the vertex is a minimum or a maximum and justify your answer.
3. [2] (WebHW10 \#3) Write a polynomial of degree five that has five distinct x-intercepts and whose graph rises to the left and falls to the right.
4. [2] (Quiz3 \#2) Identify all of the graphs below that could be a 4th degree polynomial.

5. Let p be the function graphed below.
(a) [1] (PracticeExam \#3)

Find the range of p.
(b) [1] (PraticeExam \#3)

True or False
The function p has an inverse.
(c) [1] (Quiz3 \#4) True or False
 The leading coefficient of p is negative.
(d) $[4](\S 2.3 \# 38)$ Assume when p is completely factored, each real zero corresponds to a factor of the form $(x-c)^{m}$. Find the equation of least degree for p.
6. Let $f(x)=\frac{x+1}{x-2}$
(a) [3] (WebHW11 \#4) Find the quotient and remainder and consider writing your answer as Quotient + Remainder/ $(x-2)$
(b) [1] (RationalWks \#2)

Find the domain of f
(c) $[4](\S 1.7 \# 55)$ Find the inverse of f
7. Consider $g(x)=1+\frac{3}{x-2}$
(a) [4] (RationalWks \#4)

Graph g.
(Consider using graph transformations of $y=\frac{1}{x}!$)
(b) [1] (WebHW12 \#5)

Find any vertical asymptotes.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline & & & & y_{4}^{5} & & & & & \\ \hline\end{array}\right)$
8. [3] (§2.3 \#65) The area of a rectangle is $\left(2 x^{4}-2 x^{3}+5 x^{2}-x+2\right)$ square centimeters. Its length is $\left(x^{2}-x+2\right) \mathrm{cm}$. Find its width.
9. [2] (ModelingWks \#1) Alisha went to Europe last summer. She discovered that when she exchanged her U.S. dollars for euros, she received 25% fewer euros than the number of dollars she exchanged. When she returned to the United States, she got 25% more dollars than the number of euros she exchanged.
Are the two conversion functions inverses? Justify your reasoning.
10. (WebHW8 \#6) A rancher with 180 meters of fencing intends to enclose a rectangular region along a river (which serves as a natural boundary requiring no fence).
(a) [3] Find the area of the region as a function of the width.
(b) [2] Find the maximum area that can be enclosed.

