MIDTERM 2

MATH 111

Practice

NAME:

1. [10] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true. Otherwise, circle F.

Let f and g be functions.

- T F f(x+y) = f(x) + f(y)
- T F (f g)(x) = f(x) g(x)
- T F f(g(x)) = g(f(x))
- T F (fg)(x) = (gf)(x)
- T F $f(\frac{x}{y}) = \frac{f(x)}{f(y)}$
- $T \quad F \quad \log(\log(10)) = 0.$
- ${\rm T} \quad {\rm F} \quad \tfrac{\log v}{\log w} = \log v \log w \text{ for } v, w > 0$
- T F A function is 1-1 if and only if any vertical line passes through the graph of f at most once.
- T F If $g(x) = 6|x 5.24| + \log_{2.7} 8$, then g(x) has an inverse function.
- T F The function f with the rule $f(x) = -2^{-x}$ is increasing.

FILL-IN-THE-BLANK: Write the most appropriate answer in the space given. Correct answers will *not* get credit without supporting work.

2. [2] Given f(2) = 6 and g(x) = 3x - 7, f(g(3)) is _____.

3. [3] Let f be defined by $f(x) = \frac{6x-1}{1-3x}$. Assuming the inverse of f exists, it is: _____.

- 4. [2] If f(2) = 6 and the graph of g looks like the graph of f stretched vertically by a factor of 2 and shifted down 1, then g(2) is _____.
- 5. [1] If f and g are inverses and the range of f is $(-\infty, 67]$, then the domain of g is:

LONG ANSWERS: Show all your work and circle you final answer. Correct answers will *not* get credit without supporting work.

6. [1] Given $-x = \frac{2xy}{2y-1}$, solve for y.

- 7. [2] Define the rule of the function log.
- 8. [4] Assume b, x, y > 0, simplify the following:

$$\frac{(b^x)^{x-1}}{b^{-x}} \qquad \qquad \frac{\sqrt[3]{x^2}(y^2)^{\frac{3}{2}}}{x^{\frac{2}{3}}y^2}$$

9. Write the given expression as a single logarithm. $2\ln 2x - 3(\ln x^2 + \ln x)$

 $3 - \log_6(36y)$

10. [3] Find x in the following: $2^{4x-1} = 3^{1-x})$

$$5^{x} = 2$$

11. [4] List the transformations needed to transform the graph of $h(x) = \log_2 x$ to the graph of $f(x) = \frac{1}{2}\log_2(x+3) + 1$. Then graph f and its *inverse*.

				v ⁵					
				^y 4					
				3					
				2					
				1			1		
-4	-3	-2	-1	0	1	2	3	4	,5
				-1					\mathcal{A}
				-2					
				-3					
				-4					

- 12. Let f(x) = 3x + 1 and $g(x) = \sqrt{x 1}$. Find the following, and specify the domain of each one.
 - [2] (f-g)(x)
 - [2] (fg)(x)
 - [3] $\frac{g}{f}(x)$
 - [1] g(f(x))
 - [3] f(g(x))

- 13. [] Anne has \$20,000 in student loans at the end of her college education with 8% interest compounded quarterly. Anne chooses not to make payments after graduation since she has trouble
 - (a) How much money will Anne owe after 2 years?

(b) How long will it take for Anne's loan to double?