Practice Final

Partial Solutions

NAME:

[11] Let f & g, be functions, and x & y be real numbers.

$$\begin{array}{ll} \mathrm{T} & (fg)(x) = (gf)(x) \\ & \mathrm{Note} \ f(x)g(x) = g(x)f(x). \\ \mathrm{F} & (\frac{f}{g})(x) = (\frac{g}{f})(x) \\ & \mathrm{Note \ sometimes} \ \frac{f(x)}{g(x)} \neq \frac{g(x)}{f(x)}. \\ \mathrm{F} & x^2 = y \ \mathrm{defines} \ x \ \mathrm{as} \ \mathrm{a} \ \mathrm{function} \ \mathrm{of} \ y \\ & \mathrm{Note \ there \ are \ two \ values \ of} \ x \ \mathrm{which \ satisfy} \ x^2 = y \ \mathrm{when} \ y > 0. \\ \mathrm{T} & x - 2 \ \mathrm{is} \ \mathrm{a} \ \mathrm{factor} \ \mathrm{of} \ \frac{1}{2}x^4 - 2x^2 + x - 2 \\ & \mathrm{Use \ the \ factor \ theorem \ and \ the \ fact \ that} \ \frac{1}{2}(2^4) - 2(2^2) + 2 - 2 = 0. \\ \mathrm{F} & \log(\log(e)) = 0. \\ & \mathrm{Note \ \log(\log(e))} \approx -0.36221. \\ \mathrm{T} & \mathrm{The \ diameter \ of \ a \ circle \ varies \ directly \ with \ the \ radius. \\ & \mathrm{Note \ } d = 2r. \end{array}$$

Right answers will *not* get credit without supporting work. Note "unde-fined" and "no solution" are possible answers.

1. [2] Define $\log x = y$

 $\log x = y$ exactly when $10^y = x$. (Alternatively, $\log x$ is the exponent you need to raise 10 to in order to get y.)

2. [2] Which of the following may be a graph of a polynomial of degree five with a positive leading coefficient?

3. [2] Which of the following is a graph of an even function?

4. [3] If f(x) is an even function, f(2) = 6, and $g(x) = \frac{1}{2}f(2x) - \frac{1}{3}$, what is g(-1)?

$$g(-1) = \frac{1}{2}f(-2) - \frac{1}{3} = \frac{1}{2} \cdot 6 - \frac{1}{3} = 3 - \frac{1}{3} = \frac{8}{3}$$
, since $f(-2) = 6$.

5. [3] Find the equation for a line that is perpendicular to the line with end points (51, 60) and (53, 50).

The slope of the original line is $m_1 = \frac{60-50}{51-53} = \frac{10}{-2} = -5$. Thus, our new line will have slope $m_2 = \frac{1}{5}$. Such a line is given by $y = \frac{1}{5}x$.

6. [3] Given $kx^2 + 5x - 2 = 0$, what does k have to be to ensure 2 real solutions? Give answer in interval notation.

Notice if k = 0, then we'll have a linear equation, which would only have one solution, thus $k \neq 0$.

We note that this polynomial has two real solutions when the descriminant $5^2 - 4 \cdot k \cdot -2 > 0$. Thus, 8k > -25, so k > -25/8. In interval notation, the solution is expressed by $\left(-\frac{25}{8}, 0\right) \cup (0, \infty)$.

7. [3] Let g be the function defined by the rule $g(x) = |x^2 + 3x - 6|$. Find x such that g(x) = 2x.

if
$$|x^2 + 3x - 6| \ge 0$$
if $|x^2 + 3x - 6| < 0$ $|x^2 + 3x - 6| = x^2 + 3x - 6$ $|x^2 + 3x - 6| = -(x^2 + 3x - 6)$ So $|x^2 + 3x - 6| = -(x^2 + 3x - 6)$ $g(x) = 2x$ $-(x^2 + 3x - 6) = 2x$ $x^2 + 3x - 6 = 2x$ $-(x^2 + 3x - 6) = 2x$ $x^2 + x - 6 = 0$ or $x^2 + 3x - 6 = -2x$ $(x + 3)(x - 2) = 0$ $x^2 + 5x - 6 = 0$ $x = -3$ or $x = 2$ $(x + 6)(x - 1) = 0$ $x = -6$ or $x = 1$

Checking:

$$\begin{array}{ll} \text{if } x=-3 & \text{if } x=2 & \text{if } x=-6 & \text{if } x=1 \\ g(-3)?2(-3) & g(2)?2(2) & g(-6)?2(-6) & g(1)?2(1) \\ |(-3)^2+3(-3)-6|?-6 & |(2)^2+3(2)-6|?4 & |(-6)^2+3(-6)-6|?-12 & |(1)^2+3(1)-6|?2 \\ |-6|?-6 & |4|?4 & |12|?-12 & |-2|?2 \\ 6\neq-6 & 4=4 & 12\neq-12 & 2=2 \\ \end{array}$$

- 8. Given $f(x) = \frac{1}{1-x} 2$:
 - [5] Compute the difference quotient. Recall the difference quotient is:

$$f(x) = \frac{f(x+h) - f(x)}{h}$$

• [2] List the transformations needed to transfrm the graph of $h(x) = \frac{1}{x}$ into the graph of f. Graph both h and f. Be sure to identify which one is which.

				$y_{\mathbf{A}}^{5\uparrow}$					
				3					
				2					
				1					
-4	-3	-2	-1	0	1	2	3	4	v
				-1					-1
				-2					
				-3					
				-4					

• [2] Algebraically find the inverse of f(x).

- 9. [15] Let $f(x) = \sqrt{7x-3}$, and g(x) = 3x 7. Find the following, and specify the domain in interval notation of each one.
 - (a) [3] fg(x)

 $fg(x) = \sqrt{7x - 3}(3x - 7)$. The domain is the solution of $7x - 3 \ge 0$: We have $7x \ge 3$, so $x \ge \frac{3}{7}$. The interval notation, we have $\left[\frac{3}{7}, \infty\right)$.

(b) [4] $\left(\frac{f}{g}\right)(x)$

 $\left(\frac{f}{g}\right)(x) = \frac{\sqrt{7x-3}}{3x-7}$. A real number x is in the domain if x is in the domain of both f and g and $g(x) \neq 0$. So, we have to determine when $7x - 3 \ge 0$ and $3x - 7 \ne 0$. Above, we found $7x - 3 \ge 0$ on $[3/7, \infty)$. Solving 3x - 7 = 0, we get x = 7/3. Thus, we have the domain $[3/7, 7/3) \cup (7/3, \infty)$.

(c) [4] $\left(\frac{g}{f}\right)(x)$

 $\left(\frac{g}{f}\right)(x) = \frac{3x-7}{\sqrt{7x-3}}$. We have to determine when 7x - 3 > 0. This occurs on $(3/7, \infty)$, and thus that is the domain.

(d) [4] f(g(x))

 $f(g(x)) = \sqrt{7g(x) - 3} = \sqrt{7(3x - 7) - 3} = \sqrt{21x - 52}$. For the domain, we need g(x) to be in the domain of f, in other words, $3x - 7 \ge 3/7$. So $3x \ge 52/7$, that is, $x \ge 52/21$.

10. Simplify:

$$\frac{\sqrt{c^2 d^6}}{\sqrt{4c^3 d^{-4}}}$$
 $\log_2 \frac{1}{4}$

11. [7] Given f(3) = 0, use the factor theorem to find the other roots of $x^4 - 3x^3 - 25x^2 + 75x$

We know x - 3 is a factor of f by the factor theorem. Divide f by x - 3, to get $x^3 - 25x$. Note we can factor this to get $x(x^2 - 25) = x(x + 5)(x - 5)$. Thus, the roots are 3, 5, -5, 0.

12. [3] Simplify:

$$\frac{(x^2)^{\frac{1}{3}}(8y^2)^{\frac{2}{3}}}{4x^{\frac{2}{3}}y^2} \qquad \qquad 2 - \log_5(25z)$$

 $2 - \log_5(25z) = 2 - (\log_5(25) + \log_5(z)) = 2 - (2 + \log_5(z)) = -\log_5(z).$

13. [4] Solve for x:

$$\log(x - 16) = 2 - \log(x - 1)$$

$$4^x - 3 * 2^x = 10$$

Note $4 = 2^2$. So, we can write $(2^2)^x - 3 \cdot 2^x = 10$, so $(2^x)^2 - 3 \cdot 2^x = 10$. Let $u = 2^x$. Then we have $u^2 - 3u - 10 = 0$, that is, (u - 5)(u + 2) = 0. So, u = 5 or u = -2. So $2^x = 5$ or $2^x = -2$. The second is impossible, so we have $2^x = 5$, which means $x = \log_2(5)$. 14. [4] Draw the complete graph of $f(x) = \frac{1}{2}\log_2(x+3) + 1$, using only graph transformations. List the transformations in order.

The transformations are

- Horizontal shift left 3 units
- Vertically stretch by a factor of $\frac{1}{2}$
- Vertical shift up 1 unit
- 15. [4] Your given a 16 oz mocha that is a rather weak 3% espresso. You, knowing you'll be up late studying mathematics, would rather like a 30% espresso drink. Realizing this you purchase an espresso machine. How much weak mocha do you discard and replace with straight espresso?

Set up the following equation, where x is the amount of the drink to be discarded and replaced:

((16 - x) oz. of 3% espresso) + (x oz. of 100% espresso) = (16 oz. of 30% espresso).

This can be rewritten

$$.03(16 - x) + x = 16(.3).$$

We can solve for x to get $x \approx 4.45361$.

16. [2] How long will a loan take to triple at 20% interest compounted quarterly?

The amount of money owed after t years is given by $f(t) = P\left(1 + \frac{2}{4}\right)^{4t}$, where P is the original principal. We want f(t) = 3P, that is, $3P = P(1 + \frac{2}{4})^{4t}$. We can immediately cancel the P's to get $3 = (1 + \frac{2}{4})^{4t}$, that is, $3 = 1.05^{4t}$. Apply ln to both sides, obtaining

$$\ln(3) = \ln(1.05^{4t})$$
$$\ln(3) = 4t \ln(1.05)$$
$$\frac{\ln(3)}{4 \ln(1.05)} = t$$
$$t \approx 5.62927$$

. So, you should leave your money in until third quarter of the fifth year.

17. [2] A potter can sell 120 bowls per week at \$5 per bowl. For each 50 cent decrease in price, 20 more bowls are sold. What price should be charged to maximize sales income?

18. [10] Graph and answer the following for

$$f(x) = \frac{(x-2)(x^2+3x-10)}{x^2-5x+6}$$

- (a) [3] Domain: (Give answers in interval notation) The domain comprises all real numbers that are not roots of the denominator. We can factor to get $f(x) = \frac{(x-2)(x-2)(x+5)}{(x-3)(x-2)}$. Thus, the domain is $(-\infty, 2) \cup (2, 3) \cup (3, \infty)$.
- (b) [2] Vertical Asymptotes:

Simplify f(x) to $g(x) = \frac{(x-2)(x+5)}{(x-3)}$. The vertical asymptotes are the roots of the denominator of this simplified function. Thus there is a vertical asymptote at x = 3

- (c) [1] Horizontal Asymptotes: The numerator has degree 2, while the denominator has degree 1. Thus, there is no horizontal asymptote.
- (d) [2] X-Intercepts:

We look at roots of the numerator, which occur at x = 2 and x = -5. However, there is a hole at x = 2, so the only x-intercept is at x = -5. The coordinates are (-5, 0).

(e) [1] *Y*-Intercept:y

Evaluate the function at x = 0:

$$f(0) = \frac{(-2)5}{(-3)} = 10/3.$$

(f) [2] Holes: (Just the x-coordinate will suffice.) Examining the domain, we see $x \neq 2$ and $x \neq 3$. From above we know x = 3 is a vertical asymptote, but x = 2 isn't, thus there is a hole at x = 2.